Cargando…
Incorporating Large A Cations into Lead Iodide Perovskite Cages: Relaxed Goldschmidt Tolerance Factor and Impact on Exciton–Phonon Interaction
[Image: see text] The stability and formation of a perovskite structure is dictated by the Goldschmidt tolerance factor as a general geometric guideline. The tolerance factor has limited the choice of cations (A) in 3D lead iodide perovskites (APbI(3)), an intriguing class of semiconductors for high...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6716133/ https://www.ncbi.nlm.nih.gov/pubmed/31482120 http://dx.doi.org/10.1021/acscentsci.9b00367 |
Sumario: | [Image: see text] The stability and formation of a perovskite structure is dictated by the Goldschmidt tolerance factor as a general geometric guideline. The tolerance factor has limited the choice of cations (A) in 3D lead iodide perovskites (APbI(3)), an intriguing class of semiconductors for high-performance photovoltaics and optoelectronics. Here, we show the tolerance factor requirement is relaxed in 2D Ruddlesden–Popper (RP) perovskites, enabling the incorporation of a variety of larger cations beyond the methylammonium (MA), formamidinium, and cesium ions in the lead iodide perovskite cages for the first time. This is unequivocally confirmed with the single-crystal X-ray structure of newly synthesized guanidinium (GA)-based (n-C(6)H(13)NH(3))(2)(GA)Pb(2)I(7), which exhibits significantly enlarged and distorted perovskite cage containing sterically constrained GA cation. Structural comparison with (n-C(6)H(13)NH(3))(2)(MA)Pb(2)I(7) reveals that the structural stabilization originates from the mitigation of strain accumulation and self-adjustable strain-balancing in 2D RP structures. Furthermore, spectroscopic studies show a large A cation significantly influences carrier dynamics and exciton–phonon interactions through modulating the inorganic sublattice. These results enrich the diverse families of perovskite materials, provide new insights into the mechanistic role of A-site cations on their physical properties, and have implications to solar device studies using engineered perovskite thin films incorporating such large organic cations. |
---|