Cargando…

An impaired intrinsic microglial clock system induces neuroinflammatory alterations in the early stage of amyloid precursor protein knock-in mouse brain

BACKGROUND: Disturbances in clock genes affect almost all patients with Alzheimer’s disease (AD), as evidenced by their altered sleep/wake cycle, thermoregulation, and exacerbation of cognitive impairment. As microglia-mediated neuroinflammation proved to be a driver of AD rather than a result of th...

Descripción completa

Detalles Bibliográficos
Autores principales: Ni, Junjun, Wu, Zhou, Meng, Jie, Saito, Takashi, Saido, Takaomi C., Qing, Hong, Nakanishi, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6716829/
https://www.ncbi.nlm.nih.gov/pubmed/31470863
http://dx.doi.org/10.1186/s12974-019-1562-9
Descripción
Sumario:BACKGROUND: Disturbances in clock genes affect almost all patients with Alzheimer’s disease (AD), as evidenced by their altered sleep/wake cycle, thermoregulation, and exacerbation of cognitive impairment. As microglia-mediated neuroinflammation proved to be a driver of AD rather than a result of the disease, in this study, we evaluated the relationship between clock gene disturbance and neuroinflammation in microglia and their contribution to the onset of AD. METHODS: In this study, the expression of clock genes and inflammatory-related genes was examined in MACS microglia isolated from 2-month-old amyloid precursor protein knock-in (APP-KI) and wild-type (WT) mice using cap analysis gene expression (CAGE) deep sequencing and RT-PCR. The effects of clock gene disturbance on neuroinflammation and relevant memory changes were examined in 2-month-old APP-KI and WT mice after injection with SR9009 (a synthetic agonist for REV-ERB). The microglia morphology was studied by staining, neuroinflammation was examined by Western blotting, and cognitive changes were examined by Y-maze and novel object recognition tests. RESULTS: CLOCK/BMAL1-driven transcriptional negative feedback loops were impaired in the microglia from 2-month-old APP-KI mice. Pro-inflammatory genes in microglia isolated from APP-KI mice were significantly higher than those isolated from WT mice at Zeitgeber time 14. The expression of pro-inflammatory genes was positively associated with NF-κB activation and negatively associated with the BMAL1 expression. SR9009 induced the activation of microglia, the increased expression of pro-inflammatory genes, and cognitive decline in 2-month-old APP-KI mice. CONCLUSION: Clock gene disturbance in microglia is involved in the early onset of AD through the induction of chronic neuroinflammation, which may be a new target for preventing or slowing AD. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12974-019-1562-9) contains supplementary material, which is available to authorized users.