Cargando…

Chrysosplenetin promotes osteoblastogenesis of bone marrow stromal cells via Wnt/β-catenin pathway and enhances osteogenesis in estrogen deficiency-induced bone loss

BACKGROUND: Chrysosplenetin is an O-methylated flavonol compound isolated from the plant Chamomilla recutita and Laggera pterodonta. The aim of our research is to evaluate the function of Chrysosplenetin on osteogenesis of human-derived bone marrow stromal cells (hBMSCs) and inhibition of estrogen d...

Descripción completa

Detalles Bibliográficos
Autores principales: Hong, Guoju, He, Xiaoming, Shen, Yingshan, Chen, Xiaojun, Yang, Fang, Yang, Peng, Pang, Fengxiang, Han, Xiaorui, He, Wei, Wei, Qiushi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6716882/
https://www.ncbi.nlm.nih.gov/pubmed/31464653
http://dx.doi.org/10.1186/s13287-019-1375-x
Descripción
Sumario:BACKGROUND: Chrysosplenetin is an O-methylated flavonol compound isolated from the plant Chamomilla recutita and Laggera pterodonta. The aim of our research is to evaluate the function of Chrysosplenetin on osteogenesis of human-derived bone marrow stromal cells (hBMSCs) and inhibition of estrogen deficiency-induced osteoporosis via the Wnt/β-catenin signaling pathway. METHOD: hBMSCs are cultured and treated by Chrysosplenetin in the absence or presence of Wnt inhibitor dickkopf-related protein 1 (DKK1) or bone morphogenetic protein 2 (BMP2) antagonist Noggin. RT-qPCR is taken to identify the genetic expression of target genes of Wnt/β-catenin pathway and osteoblast-specific markers. The situation of β-catenin is measured by western blot and immunofluorescence staining. An ovariectomized (OVX) mouse model is set up to detect the bone loss suppression by injecting Chrysosplenetin. Micro-CT and histological assay are performed to evaluate the protection of bone matrix and osteoblast number. Serum markers related with osteogenesis are detected by ELISA. RESULTS: In the present study, it is found that Chrysosplenetin time-dependently promoted proliferation and osteoblastogenesis of hBMSCs reaching its maximal effects at a concentration of 10 μM. The expressions of target genes of Wnt/β-catenin pathway and osteoblast-specific marker genes are enhanced by Chrysosplenetin treatment. Furthermore, the phosphorylation of β-catenin is decreased, and nuclear translocation of β-catenin is promoted by Chrysosplenetin. Osteogenesis effects mentioned above are founded to be blocked by DKK1 or BMP2 antagonist Noggin. In vivo study reveals that Chrysosplenetin prevents estrogen deficiency-induced bone loss in OVX mice detected by Micro-CT, histological analysis, and ELISA. CONCLUSIONS: Our study demonstrates that Chrysosplenetin improves osteoblastogenesis of hBMSCs and osteogenesis in estrogen deficiency-induced bone loss by regulating Wnt/β-catenin pathway. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13287-019-1375-x) contains supplementary material, which is available to authorized users.