Cargando…
Targeting sickle cell disease root-cause pathophysiology with small molecules
The complex, frequently devastating, multi-organ pathophysiology of sickle cell disease has a single root cause: polymerization of deoxygenated sickle hemoglobin. A logical approach to disease modification is, therefore, to interdict this root cause. Ideally, such interdiction would utilize small mo...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ferrata Storti Foundation
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6717594/ https://www.ncbi.nlm.nih.gov/pubmed/31399526 http://dx.doi.org/10.3324/haematol.2018.207530 |
_version_ | 1783447580185722880 |
---|---|
author | Saunthararajah, Yogen |
author_facet | Saunthararajah, Yogen |
author_sort | Saunthararajah, Yogen |
collection | PubMed |
description | The complex, frequently devastating, multi-organ pathophysiology of sickle cell disease has a single root cause: polymerization of deoxygenated sickle hemoglobin. A logical approach to disease modification is, therefore, to interdict this root cause. Ideally, such interdiction would utilize small molecules that are practical and accessible for worldwide application. Two types of such small molecule strategies are actively being evaluated in the clinic. The first strategy intends to shift red blood cell precursor hemoglobin manufacturing away from sickle hemoglobin and towards fetal hemoglobin, which inhibits sickle hemoglobin polymerization by a number of mechanisms. The second strategy intends to chemically modify sickle hemoglobin directly in order to inhibit its polymerization. Important lessons have been learnt from the pre-clinical and clinical evaluations to date. Open questions remain, but this review summarizes the valuable experience and knowledge already gained, which can guide ongoing and future efforts for molecular mechanism-based, practical and accessible disease modification of sickle cell disease. |
format | Online Article Text |
id | pubmed-6717594 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Ferrata Storti Foundation |
record_format | MEDLINE/PubMed |
spelling | pubmed-67175942019-09-06 Targeting sickle cell disease root-cause pathophysiology with small molecules Saunthararajah, Yogen Haematologica Review Article The complex, frequently devastating, multi-organ pathophysiology of sickle cell disease has a single root cause: polymerization of deoxygenated sickle hemoglobin. A logical approach to disease modification is, therefore, to interdict this root cause. Ideally, such interdiction would utilize small molecules that are practical and accessible for worldwide application. Two types of such small molecule strategies are actively being evaluated in the clinic. The first strategy intends to shift red blood cell precursor hemoglobin manufacturing away from sickle hemoglobin and towards fetal hemoglobin, which inhibits sickle hemoglobin polymerization by a number of mechanisms. The second strategy intends to chemically modify sickle hemoglobin directly in order to inhibit its polymerization. Important lessons have been learnt from the pre-clinical and clinical evaluations to date. Open questions remain, but this review summarizes the valuable experience and knowledge already gained, which can guide ongoing and future efforts for molecular mechanism-based, practical and accessible disease modification of sickle cell disease. Ferrata Storti Foundation 2019-09 /pmc/articles/PMC6717594/ /pubmed/31399526 http://dx.doi.org/10.3324/haematol.2018.207530 Text en Copyright© 2019 Ferrata Storti Foundation Material published in Haematologica is covered by copyright. All rights are reserved to the Ferrata Storti Foundation. Use of published material is allowed under the following terms and conditions: https://creativecommons.org/licenses/by-nc/4.0/legalcode. Copies of published material are allowed for personal or internal use. Sharing published material for non-commercial purposes is subject to the following conditions: https://creativecommons.org/licenses/by-nc/4.0/legalcode, sect. 3. Reproducing and sharing published material for commercial purposes is not allowed without permission in writing from the publisher. |
spellingShingle | Review Article Saunthararajah, Yogen Targeting sickle cell disease root-cause pathophysiology with small molecules |
title | Targeting sickle cell disease root-cause pathophysiology with small molecules |
title_full | Targeting sickle cell disease root-cause pathophysiology with small molecules |
title_fullStr | Targeting sickle cell disease root-cause pathophysiology with small molecules |
title_full_unstemmed | Targeting sickle cell disease root-cause pathophysiology with small molecules |
title_short | Targeting sickle cell disease root-cause pathophysiology with small molecules |
title_sort | targeting sickle cell disease root-cause pathophysiology with small molecules |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6717594/ https://www.ncbi.nlm.nih.gov/pubmed/31399526 http://dx.doi.org/10.3324/haematol.2018.207530 |
work_keys_str_mv | AT saunthararajahyogen targetingsicklecelldiseaserootcausepathophysiologywithsmallmolecules |