Cargando…

Design and Mechanical Sensitivity Analysis of a MEMS Tuning Fork Gyroscope with an Anchored Leverage Mechanism

This paper presents the design and analysis of a new micro-electro-mechanical system (MEMS) tuning fork gyroscope (TFG), which can effectively improve the mechanical sensitivity of the gyroscope sense-mode by the designed leverage mechanism. A micromachined TFG with an anchored leverage mechanism is...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Zezhang, Gao, Shiqiao, Jin, Lei, Liu, Haipeng, Guan, Yanwei, Peng, Shigang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719213/
https://www.ncbi.nlm.nih.gov/pubmed/31394850
http://dx.doi.org/10.3390/s19163455
Descripción
Sumario:This paper presents the design and analysis of a new micro-electro-mechanical system (MEMS) tuning fork gyroscope (TFG), which can effectively improve the mechanical sensitivity of the gyroscope sense-mode by the designed leverage mechanism. A micromachined TFG with an anchored leverage mechanism is designed. The dynamics and mechanical sensitivity of the design are theoretically analyzed. The improvement rate of mechanical sensitivity (IRMS) is introduced to represent the optimization effect of the new structure compared with the conventional one. The analytical solutions illustrate that the IRMS monotonically increases with increased stiffness ratio of the power arm (SRPA) but decreases with increased stiffness ratio of the resistance arm (SRRA). Therefore, three types of gyro structures with different stiffness ratios are designed. The mechanical sensitivities increased by 79.10%, 81.33% and 68.06% by theoretical calculation. Additionally, FEM simulation demonstrates that the mechanical sensitivity of the design is in accord with theoretical results. The linearity of design is analyzed, too. Consequently, the proposed new anchored leverage mechanism TFG offers a higher displacement output of sense mode to improve the mechanical sensitivity.