Cargando…
Chromatin targeting of nuclear pore proteins induces chromatin decondensation
Nuclear pore complexes have emerged in recent years as chromatin-binding nuclear scaffolds, able to influence target gene expression. However, how nucleoporins (Nups) exert this control remains poorly understood. Here we show that ectopically tethering Drosophila Nups, especially Sec13, to chromatin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719443/ https://www.ncbi.nlm.nih.gov/pubmed/31366666 http://dx.doi.org/10.1083/jcb.201807139 |
_version_ | 1783447935498846208 |
---|---|
author | Kuhn, Terra M. Pascual-Garcia, Pau Gozalo, Alejandro Little, Shawn C. Capelson, Maya |
author_facet | Kuhn, Terra M. Pascual-Garcia, Pau Gozalo, Alejandro Little, Shawn C. Capelson, Maya |
author_sort | Kuhn, Terra M. |
collection | PubMed |
description | Nuclear pore complexes have emerged in recent years as chromatin-binding nuclear scaffolds, able to influence target gene expression. However, how nucleoporins (Nups) exert this control remains poorly understood. Here we show that ectopically tethering Drosophila Nups, especially Sec13, to chromatin is sufficient to induce chromatin decondensation. This decondensation is mediated through chromatin-remodeling complex PBAP, as PBAP is both robustly recruited by Sec13 and required for Sec13-induced decondensation. This phenomenon is not correlated with localization of the target locus to the nuclear periphery, but is correlated with robust recruitment of Nup Elys. Furthermore, we identified a biochemical interaction between endogenous Sec13 and Elys with PBAP, and a role for endogenous Elys in global as well as gene-specific chromatin decompaction. Together, these findings reveal a functional role and mechanism for specific nuclear pore components in promoting an open chromatin state. |
format | Online Article Text |
id | pubmed-6719443 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-67194432020-03-02 Chromatin targeting of nuclear pore proteins induces chromatin decondensation Kuhn, Terra M. Pascual-Garcia, Pau Gozalo, Alejandro Little, Shawn C. Capelson, Maya J Cell Biol Research Articles Nuclear pore complexes have emerged in recent years as chromatin-binding nuclear scaffolds, able to influence target gene expression. However, how nucleoporins (Nups) exert this control remains poorly understood. Here we show that ectopically tethering Drosophila Nups, especially Sec13, to chromatin is sufficient to induce chromatin decondensation. This decondensation is mediated through chromatin-remodeling complex PBAP, as PBAP is both robustly recruited by Sec13 and required for Sec13-induced decondensation. This phenomenon is not correlated with localization of the target locus to the nuclear periphery, but is correlated with robust recruitment of Nup Elys. Furthermore, we identified a biochemical interaction between endogenous Sec13 and Elys with PBAP, and a role for endogenous Elys in global as well as gene-specific chromatin decompaction. Together, these findings reveal a functional role and mechanism for specific nuclear pore components in promoting an open chromatin state. Rockefeller University Press 2019-09-02 2019-07-31 /pmc/articles/PMC6719443/ /pubmed/31366666 http://dx.doi.org/10.1083/jcb.201807139 Text en © 2019 Kuhn et al. http://www.rupress.org/terms/https://creativecommons.org/licenses/by-nc-sa/4.0/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Research Articles Kuhn, Terra M. Pascual-Garcia, Pau Gozalo, Alejandro Little, Shawn C. Capelson, Maya Chromatin targeting of nuclear pore proteins induces chromatin decondensation |
title | Chromatin targeting of nuclear pore proteins induces chromatin decondensation |
title_full | Chromatin targeting of nuclear pore proteins induces chromatin decondensation |
title_fullStr | Chromatin targeting of nuclear pore proteins induces chromatin decondensation |
title_full_unstemmed | Chromatin targeting of nuclear pore proteins induces chromatin decondensation |
title_short | Chromatin targeting of nuclear pore proteins induces chromatin decondensation |
title_sort | chromatin targeting of nuclear pore proteins induces chromatin decondensation |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719443/ https://www.ncbi.nlm.nih.gov/pubmed/31366666 http://dx.doi.org/10.1083/jcb.201807139 |
work_keys_str_mv | AT kuhnterram chromatintargetingofnuclearporeproteinsinduceschromatindecondensation AT pascualgarciapau chromatintargetingofnuclearporeproteinsinduceschromatindecondensation AT gozaloalejandro chromatintargetingofnuclearporeproteinsinduceschromatindecondensation AT littleshawnc chromatintargetingofnuclearporeproteinsinduceschromatindecondensation AT capelsonmaya chromatintargetingofnuclearporeproteinsinduceschromatindecondensation |