Cargando…

Mastcam Image Resolution Enhancement with Application to Disparity Map Generation for Stereo Images with Different Resolutions

In this paper, we introduce an in-depth application of high-resolution disparity map estimation using stereo images from Mars Curiosity rover’s Mastcams, which have two imagers with different resolutions. The left Mastcam has three times lower resolution as that of the right. The left Mastcam image’...

Descripción completa

Detalles Bibliográficos
Autores principales: Ayhan, Bulent, Kwan, Chiman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720598/
https://www.ncbi.nlm.nih.gov/pubmed/31409022
http://dx.doi.org/10.3390/s19163526
Descripción
Sumario:In this paper, we introduce an in-depth application of high-resolution disparity map estimation using stereo images from Mars Curiosity rover’s Mastcams, which have two imagers with different resolutions. The left Mastcam has three times lower resolution as that of the right. The left Mastcam image’s resolution is first enhanced with three methods: Bicubic interpolation, pansharpening-based method, and a deep learning super resolution method. The enhanced left camera image and the right camera image are then used to estimate the disparity map. The impact of the left camera image enhancement is examined. The comparative performance analyses showed that the left camera enhancement results in getting more accurate disparity maps in comparison to using the original left Mastcam images for disparity map estimation. The deep learning-based method provided the best performance among the three for both image enhancement and disparity map estimation accuracy. A high-resolution disparity map, which is the result of the left camera image enhancement, is anticipated to improve the conducted science products in the Mastcam imagery such as 3D scene reconstructions, depth maps, and anaglyph images.