Cargando…
Polyelectrolyte Complexes between Polycarboxylates and BMP-2 for Enhancing Osteogenic Differentiation: Effect of Chemical Structure of Polycarboxylates
Bone morphogenetic protein 2 (BMP-2) has received considerable attention because of its osteoinductivity, but its use is limited owing to its instability and adverse effects. To reduce the dose of BMP-2, complexation with heparin is a promising approach, because heparin enhances the osteoinductivity...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723113/ https://www.ncbi.nlm.nih.gov/pubmed/31405005 http://dx.doi.org/10.3390/polym11081327 |
Sumario: | Bone morphogenetic protein 2 (BMP-2) has received considerable attention because of its osteoinductivity, but its use is limited owing to its instability and adverse effects. To reduce the dose of BMP-2, complexation with heparin is a promising approach, because heparin enhances the osteoinductivity of BMP-2. However, the clinical use of heparin is restricted because of its anticoagulant activity. Herein, to explore alternative polymers that show heparin-like activity, four polycarboxylates, poly(acrylic acid) (PAA), poly(methacrylic acid) (PMAA), poly(aspartic acid) (PAsp), and poly(glutamic acid) (PGlu), were selected and their capability to modulate the osteoinductivity of BMP-2 was evaluated. Dynamic light scattering indicated that these polycarboxylates formed polyelectrolyte complexes with BMP-2. The osteogenic differentiation efficiency of MC3T3-E1 cells treated with the polycarboxylate/BMP-2 complexes was investigated in comparison to that of the heparin/BMP-2 complex. As a result, PGlu/BMP-2 complex showed the highest activity of alkaline phosphatase, which is an early-stage marker of osteogenic differentiation, and rapid mineralization. Based on these observations, PGlu could serve as an alternative to heparin in the regenerative therapy of bone using BMP-2. |
---|