Cargando…
Analysis of the Vertical Driving Performance of Multiple Connected Pipe-Climbing Microrobots with Magnetic Wheels
In this study, we analyzed the vertical driving performance of multiple connected magnetic wheel-driven microrobots when moving up and down a small cylinder that simulated a pipe. The dynamics of pipe climbing by the magnetic wheel-driven microrobot were analyzed considering the magnetic attraction...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6724032/ https://www.ncbi.nlm.nih.gov/pubmed/31395794 http://dx.doi.org/10.3390/mi10080524 |
Sumario: | In this study, we analyzed the vertical driving performance of multiple connected magnetic wheel-driven microrobots when moving up and down a small cylinder that simulated a pipe. The dynamics of pipe climbing by the magnetic wheel-driven microrobot were analyzed considering the magnetic attraction force and slip; a vertical climbing simulator was developed considering the hoop force and external force from the adjacent microrobots to determine the magnetic attraction force required for multiple connected microrobot pipe climbing. A prototype of an independent vertical climbing microrobot, 5 mm long, 9 mm wide, and 6.5 mm high, and prototypes of 10 microrobots were manufactured to evaluate the vertical driving performance. The usefulness was verified by showing that three driving microrobots can move seven non-driving microrobots comprising 60% of their own weight up and down along a small cylinder. |
---|