Cargando…
Rapidly evolving protointrons in Saccharomyces genomes revealed by a hungry spliceosome
Introns are a prevalent feature of eukaryotic genomes, yet their origins and contributions to genome function and evolution remain mysterious. In budding yeast, repression of the highly transcribed intron-containing ribosomal protein genes (RPGs) globally increases splicing of non-RPG transcripts th...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6726248/ https://www.ncbi.nlm.nih.gov/pubmed/31437148 http://dx.doi.org/10.1371/journal.pgen.1008249 |
_version_ | 1783449070894841856 |
---|---|
author | Talkish, Jason Igel, Haller Perriman, Rhonda J. Shiue, Lily Katzman, Sol Munding, Elizabeth M. Shelansky, Robert Donohue, John Paul Ares, Manuel |
author_facet | Talkish, Jason Igel, Haller Perriman, Rhonda J. Shiue, Lily Katzman, Sol Munding, Elizabeth M. Shelansky, Robert Donohue, John Paul Ares, Manuel |
author_sort | Talkish, Jason |
collection | PubMed |
description | Introns are a prevalent feature of eukaryotic genomes, yet their origins and contributions to genome function and evolution remain mysterious. In budding yeast, repression of the highly transcribed intron-containing ribosomal protein genes (RPGs) globally increases splicing of non-RPG transcripts through reduced competition for the spliceosome. We show that under these “hungry spliceosome” conditions, splicing occurs at more than 150 previously unannotated locations we call protointrons that do not overlap known introns. Protointrons use a less constrained set of splice sites and branchpoints than standard introns, including in one case AT-AC in place of GT-AG. Protointrons are not conserved in all closely related species, suggesting that most are not under positive selection and are fated to disappear. Some are found in non-coding RNAs (e. g. CUTs and SUTs), where they may contribute to the creation of new genes. Others are found across boundaries between noncoding and coding sequences, or within coding sequences, where they offer pathways to the creation of new protein variants, or new regulatory controls for existing genes. We define protointrons as (1) nonconserved intron-like sequences that are (2) infrequently spliced, and importantly (3) are not currently understood to contribute to gene expression or regulation in the way that standard introns function. A very few protointrons in S. cerevisiae challenge this classification by their increased splicing frequency and potential function, consistent with the proposed evolutionary process of “intronization”, whereby new standard introns are created. This snapshot of intron evolution highlights the important role of the spliceosome in the expansion of transcribed genomic sequence space, providing a pathway for the rare events that may lead to the birth of new eukaryotic genes and the refinement of existing gene function. |
format | Online Article Text |
id | pubmed-6726248 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-67262482019-09-10 Rapidly evolving protointrons in Saccharomyces genomes revealed by a hungry spliceosome Talkish, Jason Igel, Haller Perriman, Rhonda J. Shiue, Lily Katzman, Sol Munding, Elizabeth M. Shelansky, Robert Donohue, John Paul Ares, Manuel PLoS Genet Research Article Introns are a prevalent feature of eukaryotic genomes, yet their origins and contributions to genome function and evolution remain mysterious. In budding yeast, repression of the highly transcribed intron-containing ribosomal protein genes (RPGs) globally increases splicing of non-RPG transcripts through reduced competition for the spliceosome. We show that under these “hungry spliceosome” conditions, splicing occurs at more than 150 previously unannotated locations we call protointrons that do not overlap known introns. Protointrons use a less constrained set of splice sites and branchpoints than standard introns, including in one case AT-AC in place of GT-AG. Protointrons are not conserved in all closely related species, suggesting that most are not under positive selection and are fated to disappear. Some are found in non-coding RNAs (e. g. CUTs and SUTs), where they may contribute to the creation of new genes. Others are found across boundaries between noncoding and coding sequences, or within coding sequences, where they offer pathways to the creation of new protein variants, or new regulatory controls for existing genes. We define protointrons as (1) nonconserved intron-like sequences that are (2) infrequently spliced, and importantly (3) are not currently understood to contribute to gene expression or regulation in the way that standard introns function. A very few protointrons in S. cerevisiae challenge this classification by their increased splicing frequency and potential function, consistent with the proposed evolutionary process of “intronization”, whereby new standard introns are created. This snapshot of intron evolution highlights the important role of the spliceosome in the expansion of transcribed genomic sequence space, providing a pathway for the rare events that may lead to the birth of new eukaryotic genes and the refinement of existing gene function. Public Library of Science 2019-08-22 /pmc/articles/PMC6726248/ /pubmed/31437148 http://dx.doi.org/10.1371/journal.pgen.1008249 Text en © 2019 Talkish et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Talkish, Jason Igel, Haller Perriman, Rhonda J. Shiue, Lily Katzman, Sol Munding, Elizabeth M. Shelansky, Robert Donohue, John Paul Ares, Manuel Rapidly evolving protointrons in Saccharomyces genomes revealed by a hungry spliceosome |
title | Rapidly evolving protointrons in Saccharomyces genomes revealed by a hungry spliceosome |
title_full | Rapidly evolving protointrons in Saccharomyces genomes revealed by a hungry spliceosome |
title_fullStr | Rapidly evolving protointrons in Saccharomyces genomes revealed by a hungry spliceosome |
title_full_unstemmed | Rapidly evolving protointrons in Saccharomyces genomes revealed by a hungry spliceosome |
title_short | Rapidly evolving protointrons in Saccharomyces genomes revealed by a hungry spliceosome |
title_sort | rapidly evolving protointrons in saccharomyces genomes revealed by a hungry spliceosome |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6726248/ https://www.ncbi.nlm.nih.gov/pubmed/31437148 http://dx.doi.org/10.1371/journal.pgen.1008249 |
work_keys_str_mv | AT talkishjason rapidlyevolvingprotointronsinsaccharomycesgenomesrevealedbyahungryspliceosome AT igelhaller rapidlyevolvingprotointronsinsaccharomycesgenomesrevealedbyahungryspliceosome AT perrimanrhondaj rapidlyevolvingprotointronsinsaccharomycesgenomesrevealedbyahungryspliceosome AT shiuelily rapidlyevolvingprotointronsinsaccharomycesgenomesrevealedbyahungryspliceosome AT katzmansol rapidlyevolvingprotointronsinsaccharomycesgenomesrevealedbyahungryspliceosome AT mundingelizabethm rapidlyevolvingprotointronsinsaccharomycesgenomesrevealedbyahungryspliceosome AT shelanskyrobert rapidlyevolvingprotointronsinsaccharomycesgenomesrevealedbyahungryspliceosome AT donohuejohnpaul rapidlyevolvingprotointronsinsaccharomycesgenomesrevealedbyahungryspliceosome AT aresmanuel rapidlyevolvingprotointronsinsaccharomycesgenomesrevealedbyahungryspliceosome |