Cargando…
Interrogating Mutant Allele Expression via Customized Reference Genomes to Define Influential Cancer Mutations
Genetic alterations are essential for cancer initiation and progression. However, differentiating mutations that drive the tumor phenotype from mutations that do not affect tumor fitness remains a fundamental challenge in cancer biology. To better understand the impact of a given mutation within can...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6726654/ https://www.ncbi.nlm.nih.gov/pubmed/31484939 http://dx.doi.org/10.1038/s41598-019-48967-8 |
_version_ | 1783449114677084160 |
---|---|
author | Grant, Adam D. Vail, Paris Padi, Megha Witkiewicz, Agnieszka K. Knudsen, Erik S. |
author_facet | Grant, Adam D. Vail, Paris Padi, Megha Witkiewicz, Agnieszka K. Knudsen, Erik S. |
author_sort | Grant, Adam D. |
collection | PubMed |
description | Genetic alterations are essential for cancer initiation and progression. However, differentiating mutations that drive the tumor phenotype from mutations that do not affect tumor fitness remains a fundamental challenge in cancer biology. To better understand the impact of a given mutation within cancer, RNA-sequencing data was used to categorize mutations based on their allelic expression. For this purpose, we developed the MAXX (Mutation Allelic Expression Extractor) software, which is highly effective at delineating the allelic expression of both single nucleotide variants and small insertions and deletions. Results from MAXX demonstrated that mutations can be separated into three groups based on their expression of the mutant allele, lack of expression from both alleles, or expression of only the wild-type allele. By taking into consideration the allelic expression patterns of genes that are mutated in PDAC, it was possible to increase the sensitivity of widely used driver mutation detection methods, as well as identify subtypes that have prognostic significance and are associated with sensitivity to select classes of therapeutic agents in cell culture. Thus, differentiating mutations based on their mutant allele expression via MAXX represents a means to parse somatic variants in tumor genomes, helping to elucidate a gene’s respective role in cancer. |
format | Online Article Text |
id | pubmed-6726654 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-67266542019-09-18 Interrogating Mutant Allele Expression via Customized Reference Genomes to Define Influential Cancer Mutations Grant, Adam D. Vail, Paris Padi, Megha Witkiewicz, Agnieszka K. Knudsen, Erik S. Sci Rep Article Genetic alterations are essential for cancer initiation and progression. However, differentiating mutations that drive the tumor phenotype from mutations that do not affect tumor fitness remains a fundamental challenge in cancer biology. To better understand the impact of a given mutation within cancer, RNA-sequencing data was used to categorize mutations based on their allelic expression. For this purpose, we developed the MAXX (Mutation Allelic Expression Extractor) software, which is highly effective at delineating the allelic expression of both single nucleotide variants and small insertions and deletions. Results from MAXX demonstrated that mutations can be separated into three groups based on their expression of the mutant allele, lack of expression from both alleles, or expression of only the wild-type allele. By taking into consideration the allelic expression patterns of genes that are mutated in PDAC, it was possible to increase the sensitivity of widely used driver mutation detection methods, as well as identify subtypes that have prognostic significance and are associated with sensitivity to select classes of therapeutic agents in cell culture. Thus, differentiating mutations based on their mutant allele expression via MAXX represents a means to parse somatic variants in tumor genomes, helping to elucidate a gene’s respective role in cancer. Nature Publishing Group UK 2019-09-04 /pmc/articles/PMC6726654/ /pubmed/31484939 http://dx.doi.org/10.1038/s41598-019-48967-8 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Grant, Adam D. Vail, Paris Padi, Megha Witkiewicz, Agnieszka K. Knudsen, Erik S. Interrogating Mutant Allele Expression via Customized Reference Genomes to Define Influential Cancer Mutations |
title | Interrogating Mutant Allele Expression via Customized Reference Genomes to Define Influential Cancer Mutations |
title_full | Interrogating Mutant Allele Expression via Customized Reference Genomes to Define Influential Cancer Mutations |
title_fullStr | Interrogating Mutant Allele Expression via Customized Reference Genomes to Define Influential Cancer Mutations |
title_full_unstemmed | Interrogating Mutant Allele Expression via Customized Reference Genomes to Define Influential Cancer Mutations |
title_short | Interrogating Mutant Allele Expression via Customized Reference Genomes to Define Influential Cancer Mutations |
title_sort | interrogating mutant allele expression via customized reference genomes to define influential cancer mutations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6726654/ https://www.ncbi.nlm.nih.gov/pubmed/31484939 http://dx.doi.org/10.1038/s41598-019-48967-8 |
work_keys_str_mv | AT grantadamd interrogatingmutantalleleexpressionviacustomizedreferencegenomestodefineinfluentialcancermutations AT vailparis interrogatingmutantalleleexpressionviacustomizedreferencegenomestodefineinfluentialcancermutations AT padimegha interrogatingmutantalleleexpressionviacustomizedreferencegenomestodefineinfluentialcancermutations AT witkiewiczagnieszkak interrogatingmutantalleleexpressionviacustomizedreferencegenomestodefineinfluentialcancermutations AT knudseneriks interrogatingmutantalleleexpressionviacustomizedreferencegenomestodefineinfluentialcancermutations |