Cargando…
TOAST: improving reference-free cell composition estimation by cross-cell type differential analysis
In the analysis of high-throughput data from complex samples, cell composition is an important factor that needs to be accounted for. Except for a limited number of tissues with known pure cell type profiles, a majority of genomics and epigenetics data relies on the “reference-free deconvolution” me...
Autores principales: | Li, Ziyi, Wu, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6727351/ https://www.ncbi.nlm.nih.gov/pubmed/31484546 http://dx.doi.org/10.1186/s13059-019-1778-0 |
Ejemplares similares
-
CeDAR: incorporating cell type hierarchy improves cell type-specific differential analyses in bulk omics data
por: Chen, Luxiao, et al.
Publicado: (2023) -
ISLET: individual-specific reference panel recovery improves cell-type-specific inference
por: Feng, Hao, et al.
Publicado: (2023) -
Toast
Publicado: (1855) -
methylCC: technology-independent estimation of cell type composition using differentially methylated regions
por: Hicks, Stephanie C., et al.
Publicado: (2019) -
BayesCCE: a Bayesian framework for estimating cell-type composition from DNA methylation without the need for methylation reference
por: Rahmani, Elior, et al.
Publicado: (2018)