Cargando…

Liposomal delivery of ferritin heavy chain 1 (FTH1) siRNA in patient xenograft derived glioblastoma initiating cells suggests different sensitivities to radiation and distinct survival mechanisms

Elevated expression of the iron regulatory protein, ferritin heavy chain 1 (FTH1), is increasingly being associated with high tumor grade and poor survival outcomes in glioblastoma. Glioma initiating cells (GICs), a small population of stem-like cells implicated in therapeutic resistance and gliobla...

Descripción completa

Detalles Bibliográficos
Autores principales: Ravi, Vagisha, Madhankumar, Achuthamangalam B., Abraham, Thomas, Slagle-Webb, Becky, Connor, James R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730865/
https://www.ncbi.nlm.nih.gov/pubmed/31491006
http://dx.doi.org/10.1371/journal.pone.0221952
_version_ 1783449591756095488
author Ravi, Vagisha
Madhankumar, Achuthamangalam B.
Abraham, Thomas
Slagle-Webb, Becky
Connor, James R.
author_facet Ravi, Vagisha
Madhankumar, Achuthamangalam B.
Abraham, Thomas
Slagle-Webb, Becky
Connor, James R.
author_sort Ravi, Vagisha
collection PubMed
description Elevated expression of the iron regulatory protein, ferritin heavy chain 1 (FTH1), is increasingly being associated with high tumor grade and poor survival outcomes in glioblastoma. Glioma initiating cells (GICs), a small population of stem-like cells implicated in therapeutic resistance and glioblastoma recurrence, have recently been shown to exhibit increased FTH1 expression. We previously demonstrated that FTH1 knockdown enhanced therapeutic sensitivity in an astrocytoma cell line. Therefore, in this study we developed a liposomal formulation to enable the in vitro delivery of FTH1 siRNA in patient xenograft derived GICs from glioblastomas with pro-neural and mesenchymal transcriptional signatures to interrogate the effect of FTH1 downregulation on their radiation sensitivity. Transfection with siRNA decreased FTH1 expression significantly in both GICs. However, there were inherent differences in transfectability between pro-neural and mesenchymal tumor derived GICs, leading us to modify siRNA: liposome ratios for comparable transfection. Moreover, loss of FTH1 expression resulted in increased extracellular lactate dehydrogenase activity, executioner caspase 3/7 induction, substantial mitochondrial damage, diminished mitochondrial mass and reduced cell viability. However, only GICs from pro-neural glioblastoma showed marked increase in radiosensitivity upon FTH1 downregulation demonstrated by decreased cell viability, impaired DNA repair and reduced colony formation subsequent to radiation. In addition, the stemness marker Nestin was downregulated upon FTH1 silencing only in GICs of pro-neural but not mesenchymal origin. Using liposomes as a siRNA delivery system, we established FTH1 as a critical factor for survival in both GIC subtypes as well as a regulator of radioresistance and stemness in pro-neural tumor derived GICs. Our study provides further evidence to support the role of FTH1 as a promising target in glioblastoma.
format Online
Article
Text
id pubmed-6730865
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-67308652019-09-16 Liposomal delivery of ferritin heavy chain 1 (FTH1) siRNA in patient xenograft derived glioblastoma initiating cells suggests different sensitivities to radiation and distinct survival mechanisms Ravi, Vagisha Madhankumar, Achuthamangalam B. Abraham, Thomas Slagle-Webb, Becky Connor, James R. PLoS One Research Article Elevated expression of the iron regulatory protein, ferritin heavy chain 1 (FTH1), is increasingly being associated with high tumor grade and poor survival outcomes in glioblastoma. Glioma initiating cells (GICs), a small population of stem-like cells implicated in therapeutic resistance and glioblastoma recurrence, have recently been shown to exhibit increased FTH1 expression. We previously demonstrated that FTH1 knockdown enhanced therapeutic sensitivity in an astrocytoma cell line. Therefore, in this study we developed a liposomal formulation to enable the in vitro delivery of FTH1 siRNA in patient xenograft derived GICs from glioblastomas with pro-neural and mesenchymal transcriptional signatures to interrogate the effect of FTH1 downregulation on their radiation sensitivity. Transfection with siRNA decreased FTH1 expression significantly in both GICs. However, there were inherent differences in transfectability between pro-neural and mesenchymal tumor derived GICs, leading us to modify siRNA: liposome ratios for comparable transfection. Moreover, loss of FTH1 expression resulted in increased extracellular lactate dehydrogenase activity, executioner caspase 3/7 induction, substantial mitochondrial damage, diminished mitochondrial mass and reduced cell viability. However, only GICs from pro-neural glioblastoma showed marked increase in radiosensitivity upon FTH1 downregulation demonstrated by decreased cell viability, impaired DNA repair and reduced colony formation subsequent to radiation. In addition, the stemness marker Nestin was downregulated upon FTH1 silencing only in GICs of pro-neural but not mesenchymal origin. Using liposomes as a siRNA delivery system, we established FTH1 as a critical factor for survival in both GIC subtypes as well as a regulator of radioresistance and stemness in pro-neural tumor derived GICs. Our study provides further evidence to support the role of FTH1 as a promising target in glioblastoma. Public Library of Science 2019-09-06 /pmc/articles/PMC6730865/ /pubmed/31491006 http://dx.doi.org/10.1371/journal.pone.0221952 Text en © 2019 Ravi et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Ravi, Vagisha
Madhankumar, Achuthamangalam B.
Abraham, Thomas
Slagle-Webb, Becky
Connor, James R.
Liposomal delivery of ferritin heavy chain 1 (FTH1) siRNA in patient xenograft derived glioblastoma initiating cells suggests different sensitivities to radiation and distinct survival mechanisms
title Liposomal delivery of ferritin heavy chain 1 (FTH1) siRNA in patient xenograft derived glioblastoma initiating cells suggests different sensitivities to radiation and distinct survival mechanisms
title_full Liposomal delivery of ferritin heavy chain 1 (FTH1) siRNA in patient xenograft derived glioblastoma initiating cells suggests different sensitivities to radiation and distinct survival mechanisms
title_fullStr Liposomal delivery of ferritin heavy chain 1 (FTH1) siRNA in patient xenograft derived glioblastoma initiating cells suggests different sensitivities to radiation and distinct survival mechanisms
title_full_unstemmed Liposomal delivery of ferritin heavy chain 1 (FTH1) siRNA in patient xenograft derived glioblastoma initiating cells suggests different sensitivities to radiation and distinct survival mechanisms
title_short Liposomal delivery of ferritin heavy chain 1 (FTH1) siRNA in patient xenograft derived glioblastoma initiating cells suggests different sensitivities to radiation and distinct survival mechanisms
title_sort liposomal delivery of ferritin heavy chain 1 (fth1) sirna in patient xenograft derived glioblastoma initiating cells suggests different sensitivities to radiation and distinct survival mechanisms
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730865/
https://www.ncbi.nlm.nih.gov/pubmed/31491006
http://dx.doi.org/10.1371/journal.pone.0221952
work_keys_str_mv AT ravivagisha liposomaldeliveryofferritinheavychain1fth1sirnainpatientxenograftderivedglioblastomainitiatingcellssuggestsdifferentsensitivitiestoradiationanddistinctsurvivalmechanisms
AT madhankumarachuthamangalamb liposomaldeliveryofferritinheavychain1fth1sirnainpatientxenograftderivedglioblastomainitiatingcellssuggestsdifferentsensitivitiestoradiationanddistinctsurvivalmechanisms
AT abrahamthomas liposomaldeliveryofferritinheavychain1fth1sirnainpatientxenograftderivedglioblastomainitiatingcellssuggestsdifferentsensitivitiestoradiationanddistinctsurvivalmechanisms
AT slaglewebbbecky liposomaldeliveryofferritinheavychain1fth1sirnainpatientxenograftderivedglioblastomainitiatingcellssuggestsdifferentsensitivitiestoradiationanddistinctsurvivalmechanisms
AT connorjamesr liposomaldeliveryofferritinheavychain1fth1sirnainpatientxenograftderivedglioblastomainitiatingcellssuggestsdifferentsensitivitiestoradiationanddistinctsurvivalmechanisms