Cargando…
Unveiling the multi-step solubilization mechanism of sub-micron size vesicles by detergents
The solubilization of membranes by detergents is critical for many technological applications and has become widely used in biochemistry research to induce cell rupture, extract cell constituents, and to purify, reconstitute and crystallize membrane proteins. The thermodynamic details of solubilizat...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733941/ https://www.ncbi.nlm.nih.gov/pubmed/31501469 http://dx.doi.org/10.1038/s41598-019-49210-0 |
_version_ | 1783450059967299584 |
---|---|
author | Dalgarno, Paul A. Juan-Colás, José Hedley, Gordon J. Piñeiro, Lucas Novo, Mercedes Perez-Gonzalez, Cibran Samuel, Ifor D. W. Leake, Mark C. Johnson, Steven Al-Soufi, Wajih Penedo, J. Carlos Quinn, Steven D. |
author_facet | Dalgarno, Paul A. Juan-Colás, José Hedley, Gordon J. Piñeiro, Lucas Novo, Mercedes Perez-Gonzalez, Cibran Samuel, Ifor D. W. Leake, Mark C. Johnson, Steven Al-Soufi, Wajih Penedo, J. Carlos Quinn, Steven D. |
author_sort | Dalgarno, Paul A. |
collection | PubMed |
description | The solubilization of membranes by detergents is critical for many technological applications and has become widely used in biochemistry research to induce cell rupture, extract cell constituents, and to purify, reconstitute and crystallize membrane proteins. The thermodynamic details of solubilization have been extensively investigated, but the kinetic aspects remain poorly understood. Here we used a combination of single-vesicle Förster resonance energy transfer (svFRET), fluorescence correlation spectroscopy and quartz-crystal microbalance with dissipation monitoring to access the real-time kinetics and elementary solubilization steps of sub-micron sized vesicles, which are inaccessible by conventional diffraction-limited optical methods. Real-time injection of a non-ionic detergent, Triton X, induced biphasic solubilization kinetics of surface-immobilized vesicles labelled with the Dil/DiD FRET pair. The nanoscale sensitivity accessible by svFRET allowed us to unambiguously assign each kinetic step to distortions of the vesicle structure comprising an initial fast vesicle-swelling event followed by slow lipid loss and micellization. We expect the svFRET platform to be applicable beyond the sub-micron sizes studied here and become a unique tool to unravel the complex kinetics of detergent-lipid interactions. |
format | Online Article Text |
id | pubmed-6733941 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-67339412019-09-20 Unveiling the multi-step solubilization mechanism of sub-micron size vesicles by detergents Dalgarno, Paul A. Juan-Colás, José Hedley, Gordon J. Piñeiro, Lucas Novo, Mercedes Perez-Gonzalez, Cibran Samuel, Ifor D. W. Leake, Mark C. Johnson, Steven Al-Soufi, Wajih Penedo, J. Carlos Quinn, Steven D. Sci Rep Article The solubilization of membranes by detergents is critical for many technological applications and has become widely used in biochemistry research to induce cell rupture, extract cell constituents, and to purify, reconstitute and crystallize membrane proteins. The thermodynamic details of solubilization have been extensively investigated, but the kinetic aspects remain poorly understood. Here we used a combination of single-vesicle Förster resonance energy transfer (svFRET), fluorescence correlation spectroscopy and quartz-crystal microbalance with dissipation monitoring to access the real-time kinetics and elementary solubilization steps of sub-micron sized vesicles, which are inaccessible by conventional diffraction-limited optical methods. Real-time injection of a non-ionic detergent, Triton X, induced biphasic solubilization kinetics of surface-immobilized vesicles labelled with the Dil/DiD FRET pair. The nanoscale sensitivity accessible by svFRET allowed us to unambiguously assign each kinetic step to distortions of the vesicle structure comprising an initial fast vesicle-swelling event followed by slow lipid loss and micellization. We expect the svFRET platform to be applicable beyond the sub-micron sizes studied here and become a unique tool to unravel the complex kinetics of detergent-lipid interactions. Nature Publishing Group UK 2019-09-09 /pmc/articles/PMC6733941/ /pubmed/31501469 http://dx.doi.org/10.1038/s41598-019-49210-0 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Dalgarno, Paul A. Juan-Colás, José Hedley, Gordon J. Piñeiro, Lucas Novo, Mercedes Perez-Gonzalez, Cibran Samuel, Ifor D. W. Leake, Mark C. Johnson, Steven Al-Soufi, Wajih Penedo, J. Carlos Quinn, Steven D. Unveiling the multi-step solubilization mechanism of sub-micron size vesicles by detergents |
title | Unveiling the multi-step solubilization mechanism of sub-micron size vesicles by detergents |
title_full | Unveiling the multi-step solubilization mechanism of sub-micron size vesicles by detergents |
title_fullStr | Unveiling the multi-step solubilization mechanism of sub-micron size vesicles by detergents |
title_full_unstemmed | Unveiling the multi-step solubilization mechanism of sub-micron size vesicles by detergents |
title_short | Unveiling the multi-step solubilization mechanism of sub-micron size vesicles by detergents |
title_sort | unveiling the multi-step solubilization mechanism of sub-micron size vesicles by detergents |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733941/ https://www.ncbi.nlm.nih.gov/pubmed/31501469 http://dx.doi.org/10.1038/s41598-019-49210-0 |
work_keys_str_mv | AT dalgarnopaula unveilingthemultistepsolubilizationmechanismofsubmicronsizevesiclesbydetergents AT juancolasjose unveilingthemultistepsolubilizationmechanismofsubmicronsizevesiclesbydetergents AT hedleygordonj unveilingthemultistepsolubilizationmechanismofsubmicronsizevesiclesbydetergents AT pineirolucas unveilingthemultistepsolubilizationmechanismofsubmicronsizevesiclesbydetergents AT novomercedes unveilingthemultistepsolubilizationmechanismofsubmicronsizevesiclesbydetergents AT perezgonzalezcibran unveilingthemultistepsolubilizationmechanismofsubmicronsizevesiclesbydetergents AT samuelifordw unveilingthemultistepsolubilizationmechanismofsubmicronsizevesiclesbydetergents AT leakemarkc unveilingthemultistepsolubilizationmechanismofsubmicronsizevesiclesbydetergents AT johnsonsteven unveilingthemultistepsolubilizationmechanismofsubmicronsizevesiclesbydetergents AT alsoufiwajih unveilingthemultistepsolubilizationmechanismofsubmicronsizevesiclesbydetergents AT penedojcarlos unveilingthemultistepsolubilizationmechanismofsubmicronsizevesiclesbydetergents AT quinnstevend unveilingthemultistepsolubilizationmechanismofsubmicronsizevesiclesbydetergents |