Cargando…

A TIGIT-based chimeric co-stimulatory switch receptor improves T-cell anti-tumor function

BACKGROUND: Tumors can employ different mechanisms to evade immune surveillance and function. Overexpression of co-inhibitory ligands that bind to checkpoint molecules on the surface of T-cells can greatly impair the function of latter. TIGIT (T cell immunoreceptor with Ig and ITIM domains) is such...

Descripción completa

Detalles Bibliográficos
Autores principales: Hoogi, Shiran, Eisenberg, Vasyl, Mayer, Shimrit, Shamul, Astar, Barliya, Tilda, Cohen, Cyrille J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6734436/
https://www.ncbi.nlm.nih.gov/pubmed/31500665
http://dx.doi.org/10.1186/s40425-019-0721-y
Descripción
Sumario:BACKGROUND: Tumors can employ different mechanisms to evade immune surveillance and function. Overexpression of co-inhibitory ligands that bind to checkpoint molecules on the surface of T-cells can greatly impair the function of latter. TIGIT (T cell immunoreceptor with Ig and ITIM domains) is such a co-inhibitory receptor expressed by T and NK cells which, upon binding to its ligand (e.g., CD155), can diminish cytokine production and effector function. Additionally, the absence of positive co-stimulation at the tumor site can further dampen T-cell response. METHODS: As T-cell genetic engineering has become clinically-relevant in the recent years, we devised herein a strategy aimed at enhancing T-cell anti-tumor function by diverting T-cell coinhibitory signals into positive ones using a chimeric costimulatory switch receptor (CSR) composed of the TIGIT exodomain fused to the signaling domain of CD28. RESULTS: After selecting an optimized TIGIT-28 CSR, we co-transduced it along with tumor-specific TCR or CAR into human T-cells. TIGIT-28-equipped T-cells exhibited enhanced cytokine secretion and upregulation of activation markers upon co-culture with tumor cells. TIGIT-28 enhancing capability was also demonstrated in an original in vitro model of T-cell of hypofunction induction upon repetitive antigen exposure. Finally, we tested the function of this molecule in the context of a xenograft model of established human melanoma tumors and showed that TIGIT-28-engineered human T-cells demonstrated superior anti-tumor function. CONCLUSION: Overall, we propose that TIGIT-based CSR can substantially enhance T-cell function and thus contribute to the improvement of engineered T cell-based immunotherapy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40425-019-0721-y) contains supplementary material, which is available to authorized users.