Cargando…
Deciphering epigenomic code for cell differentiation using deep learning
BACKGROUND: Although DNA sequence plays a crucial role in establishing the unique epigenome of a cell type, little is known about the sequence determinants that lead to the unique epigenomes of different cell types produced during cell differentiation. To fill this gap, we employed two types of deep...
Autores principales: | Ni, Pengyu, Su, Zhengchang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739944/ https://www.ncbi.nlm.nih.gov/pubmed/31510916 http://dx.doi.org/10.1186/s12864-019-6072-8 |
Ejemplares similares
-
Accurate prediction of cis-regulatory modules reveals a prevalent regulatory genome of humans
por: Ni, Pengyu, et al.
Publicado: (2021) -
PCRMS: a database of predicted cis-regulatory modules and constituent transcription factor binding sites in genomes
por: Ni, Pengyu, et al.
Publicado: (2022) -
Accurate prediction of functional states of cis-regulatory modules reveals common epigenetic rules in humans and mice
por: Ni, Pengyu, et al.
Publicado: (2022) -
A map of cis-regulatory modules and constituent transcription factor binding sites in 80% of the mouse genome
por: Ni, Pengyu, et al.
Publicado: (2022) -
Interpretation of deep learning in genomics and epigenomics
por: Talukder, Amlan, et al.
Publicado: (2020)