Cargando…

Effect of Bias Voltage on Mechanical Properties of HiPIMS/RFMS Cosputtered Zr–Si–N Films

Zr–Si–N films with atomic ratios of N/(Zr + Si) of 0.54–0.82 were fabricated through high-power impulse magnetron sputtering (HiPIMS)–radio-frequency magnetron sputtering (RFMS) cosputtering by applying an average HiPIMS power of 300 W on the Zr target, various RF power levels on the Si target, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yung-I, Zheng, Yu-Zhe, Chang, Li-Chun, Liu, Yu-Heng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747595/
https://www.ncbi.nlm.nih.gov/pubmed/31438512
http://dx.doi.org/10.3390/ma12172658
Descripción
Sumario:Zr–Si–N films with atomic ratios of N/(Zr + Si) of 0.54–0.82 were fabricated through high-power impulse magnetron sputtering (HiPIMS)–radio-frequency magnetron sputtering (RFMS) cosputtering by applying an average HiPIMS power of 300 W on the Zr target, various RF power levels on the Si target, and negative bias voltage levels of 0–150 V connected to the substrate holder. Applying a negative bias voltage on substrates enhanced the ion bombardment effect, which affected the chemical compositions, mechanical properties, and residual stress of the Zr–Si–N films. The results indicated that Zr–Si–N films with Si content ranging from 1.4 to 6.3 atom % exhibited a high hardness level of 33.2–34.6 GPa accompanied with a compressive stress of 4.3–6.4 GPa, an H/E* level of 0.080–0.107, an H(3)/E*(2) level of 0.21–0.39 GPa, and an elastic recovery of 62–72%.