Cargando…
Lrg1 Regulates β (1,3)-Glucan Masking in Candida albicans through the Cek1 MAP Kinase Pathway
Candida albicans is among the most prevalent opportunistic human fungal pathogens. The ability to mask the immunogenic polysaccharide β (1,3)-glucan from immune detection via a layer of mannosylated proteins is a key virulence factor of C. albicans. We previously reported that hyperactivation of the...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6751057/ https://www.ncbi.nlm.nih.gov/pubmed/31530671 http://dx.doi.org/10.1128/mBio.01767-19 |
_version_ | 1783452548172087296 |
---|---|
author | Chen, Tian Wagner, Andrew S. Tams, Robert N. Eyer, James E. Kauffman, Sarah J. Gann, Eric R. Fernandez, Elias J. Reynolds, Todd B. |
author_facet | Chen, Tian Wagner, Andrew S. Tams, Robert N. Eyer, James E. Kauffman, Sarah J. Gann, Eric R. Fernandez, Elias J. Reynolds, Todd B. |
author_sort | Chen, Tian |
collection | PubMed |
description | Candida albicans is among the most prevalent opportunistic human fungal pathogens. The ability to mask the immunogenic polysaccharide β (1,3)-glucan from immune detection via a layer of mannosylated proteins is a key virulence factor of C. albicans. We previously reported that hyperactivation of the Cek1 mitogen-activated protein (MAP) kinase pathway promotes β (1,3)-glucan exposure. In this communication, we report a novel upstream regulator of Cek1 activation and characterize the impact of Cek1 activity on fungal virulence. Lrg1 encodes a GTPase-activating protein (GAP) that has been suggested to inhibit the GTPase Rho1. We found that disruption of LRG1 causes Cek1 hyperactivation and β (1,3)-glucan unmasking. However, when GTPase activation was measured for a panel of GTPases, the lrg1ΔΔ mutant exhibited increased activation of Cdc42 and Ras1 but not Rho1 or Rac1. Unmasking and Cek1 activation in the lrg1ΔΔ mutant can be blocked by inhibition of the Ste11 MAP kinase kinase kinase (MAPKKK), indicating that the lrg1ΔΔ mutant acts through the canonical Cek1 MAP kinase cascade. In order to determine how Cek1 hyperactivation specifically impacts virulence, a doxycycline-repressible hyperactive STE11(ΔN467) allele was expressed in C. albicans. In the absence of doxycycline, this allele overexpressed STE11(ΔN467), which induced production of proinflammatory tumor necrosis factor alpha (TNF-α) from murine macrophages. This in vitro phenotype correlates with decreased colonization and virulence in a mouse model of systemic infection. The mechanism by which Ste11(ΔN467) causes unmasking was explored with RNA sequencing (RNA-Seq) analysis. Overexpression of Ste11(ΔN467) caused upregulation of the Cph1 transcription factor and of a group of cell wall-modifying proteins which are predicted to impact cell wall architecture. |
format | Online Article Text |
id | pubmed-6751057 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-67510572019-09-24 Lrg1 Regulates β (1,3)-Glucan Masking in Candida albicans through the Cek1 MAP Kinase Pathway Chen, Tian Wagner, Andrew S. Tams, Robert N. Eyer, James E. Kauffman, Sarah J. Gann, Eric R. Fernandez, Elias J. Reynolds, Todd B. mBio Research Article Candida albicans is among the most prevalent opportunistic human fungal pathogens. The ability to mask the immunogenic polysaccharide β (1,3)-glucan from immune detection via a layer of mannosylated proteins is a key virulence factor of C. albicans. We previously reported that hyperactivation of the Cek1 mitogen-activated protein (MAP) kinase pathway promotes β (1,3)-glucan exposure. In this communication, we report a novel upstream regulator of Cek1 activation and characterize the impact of Cek1 activity on fungal virulence. Lrg1 encodes a GTPase-activating protein (GAP) that has been suggested to inhibit the GTPase Rho1. We found that disruption of LRG1 causes Cek1 hyperactivation and β (1,3)-glucan unmasking. However, when GTPase activation was measured for a panel of GTPases, the lrg1ΔΔ mutant exhibited increased activation of Cdc42 and Ras1 but not Rho1 or Rac1. Unmasking and Cek1 activation in the lrg1ΔΔ mutant can be blocked by inhibition of the Ste11 MAP kinase kinase kinase (MAPKKK), indicating that the lrg1ΔΔ mutant acts through the canonical Cek1 MAP kinase cascade. In order to determine how Cek1 hyperactivation specifically impacts virulence, a doxycycline-repressible hyperactive STE11(ΔN467) allele was expressed in C. albicans. In the absence of doxycycline, this allele overexpressed STE11(ΔN467), which induced production of proinflammatory tumor necrosis factor alpha (TNF-α) from murine macrophages. This in vitro phenotype correlates with decreased colonization and virulence in a mouse model of systemic infection. The mechanism by which Ste11(ΔN467) causes unmasking was explored with RNA sequencing (RNA-Seq) analysis. Overexpression of Ste11(ΔN467) caused upregulation of the Cph1 transcription factor and of a group of cell wall-modifying proteins which are predicted to impact cell wall architecture. American Society for Microbiology 2019-09-17 /pmc/articles/PMC6751057/ /pubmed/31530671 http://dx.doi.org/10.1128/mBio.01767-19 Text en Copyright © 2019 Chen et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Chen, Tian Wagner, Andrew S. Tams, Robert N. Eyer, James E. Kauffman, Sarah J. Gann, Eric R. Fernandez, Elias J. Reynolds, Todd B. Lrg1 Regulates β (1,3)-Glucan Masking in Candida albicans through the Cek1 MAP Kinase Pathway |
title | Lrg1 Regulates β (1,3)-Glucan Masking in Candida albicans through the Cek1 MAP Kinase Pathway |
title_full | Lrg1 Regulates β (1,3)-Glucan Masking in Candida albicans through the Cek1 MAP Kinase Pathway |
title_fullStr | Lrg1 Regulates β (1,3)-Glucan Masking in Candida albicans through the Cek1 MAP Kinase Pathway |
title_full_unstemmed | Lrg1 Regulates β (1,3)-Glucan Masking in Candida albicans through the Cek1 MAP Kinase Pathway |
title_short | Lrg1 Regulates β (1,3)-Glucan Masking in Candida albicans through the Cek1 MAP Kinase Pathway |
title_sort | lrg1 regulates β (1,3)-glucan masking in candida albicans through the cek1 map kinase pathway |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6751057/ https://www.ncbi.nlm.nih.gov/pubmed/31530671 http://dx.doi.org/10.1128/mBio.01767-19 |
work_keys_str_mv | AT chentian lrg1regulatesb13glucanmaskingincandidaalbicansthroughthecek1mapkinasepathway AT wagnerandrews lrg1regulatesb13glucanmaskingincandidaalbicansthroughthecek1mapkinasepathway AT tamsrobertn lrg1regulatesb13glucanmaskingincandidaalbicansthroughthecek1mapkinasepathway AT eyerjamese lrg1regulatesb13glucanmaskingincandidaalbicansthroughthecek1mapkinasepathway AT kauffmansarahj lrg1regulatesb13glucanmaskingincandidaalbicansthroughthecek1mapkinasepathway AT gannericr lrg1regulatesb13glucanmaskingincandidaalbicansthroughthecek1mapkinasepathway AT fernandezeliasj lrg1regulatesb13glucanmaskingincandidaalbicansthroughthecek1mapkinasepathway AT reynoldstoddb lrg1regulatesb13glucanmaskingincandidaalbicansthroughthecek1mapkinasepathway |