Cargando…
Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction
Predicting RNA-binding protein (RBP) specificity is important for understanding gene expression regulation and RNA-mediated enzymatic processes. It is widely believed that RBP binding specificity is determined by both the sequence and structural contexts of RNAs. Existing approaches, including tradi...
Autores principales: | Su, Yufeng, Luo, Yunan, Zhao, Xiaoming, Liu, Yang, Peng, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752863/ https://www.ncbi.nlm.nih.gov/pubmed/31483777 http://dx.doi.org/10.1371/journal.pcbi.1007283 |
Ejemplares similares
-
ECNet is an evolutionary context-integrated deep learning framework for protein engineering
por: Luo, Yunan, et al.
Publicado: (2021) -
Thermodynamic modeling reveals widespread multivalent binding by RNA-binding proteins
por: Sohrabi-Jahromi, Salma, et al.
Publicado: (2021) -
Deep geometric representations for modeling effects of mutations on protein-protein binding affinity
por: Liu, Xianggen, et al.
Publicado: (2021) -
MicroRNA target prediction using thermodynamic and sequence curves
por: Ghoshal, Asish, et al.
Publicado: (2015) -
Uncovering
the Thermodynamics of Monomer Binding for
RNA Replication
por: Izgu, Enver Cagri, et al.
Publicado: (2015)