Cargando…
Resistance Evolution against Phage Combinations Depends on the Timing and Order of Exposure
Phage therapy is a promising alternative to chemotherapeutic antibiotics for the treatment of bacterial infections. However, despite recent clinical uses of combinations of phages to treat multidrug-resistant infections, a mechanistic understanding of how bacteria evolve resistance against multiple...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6759759/ https://www.ncbi.nlm.nih.gov/pubmed/31551330 http://dx.doi.org/10.1128/mBio.01652-19 |
_version_ | 1783453756110667776 |
---|---|
author | Wright, Rosanna C. T. Friman, Ville-Petri Smith, Margaret C. M. Brockhurst, Michael A. |
author_facet | Wright, Rosanna C. T. Friman, Ville-Petri Smith, Margaret C. M. Brockhurst, Michael A. |
author_sort | Wright, Rosanna C. T. |
collection | PubMed |
description | Phage therapy is a promising alternative to chemotherapeutic antibiotics for the treatment of bacterial infections. However, despite recent clinical uses of combinations of phages to treat multidrug-resistant infections, a mechanistic understanding of how bacteria evolve resistance against multiple phages is lacking, limiting our ability to deploy phage combinations optimally. Here, we show, using Pseudomonas aeruginosa and pairs of phages targeting shared or distinct surface receptors, that the timing and order of phage exposure determine the strength, cost, and mutational basis of resistance. Whereas sequential exposure allowed bacteria to acquire multiple resistance mutations effective against both phages, this evolutionary trajectory was prevented by simultaneous exposure, resulting in quantitatively weaker resistance. The order of phage exposure determined the fitness costs of sequential resistance, such that certain sequential orders imposed much higher fitness costs than the same phage pair in the reverse order. Together, these data suggest that phage combinations can be optimized to limit the strength of evolved resistances while maximizing their associated fitness costs to promote the long-term efficacy of phage therapy. |
format | Online Article Text |
id | pubmed-6759759 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-67597592019-10-01 Resistance Evolution against Phage Combinations Depends on the Timing and Order of Exposure Wright, Rosanna C. T. Friman, Ville-Petri Smith, Margaret C. M. Brockhurst, Michael A. mBio Research Article Phage therapy is a promising alternative to chemotherapeutic antibiotics for the treatment of bacterial infections. However, despite recent clinical uses of combinations of phages to treat multidrug-resistant infections, a mechanistic understanding of how bacteria evolve resistance against multiple phages is lacking, limiting our ability to deploy phage combinations optimally. Here, we show, using Pseudomonas aeruginosa and pairs of phages targeting shared or distinct surface receptors, that the timing and order of phage exposure determine the strength, cost, and mutational basis of resistance. Whereas sequential exposure allowed bacteria to acquire multiple resistance mutations effective against both phages, this evolutionary trajectory was prevented by simultaneous exposure, resulting in quantitatively weaker resistance. The order of phage exposure determined the fitness costs of sequential resistance, such that certain sequential orders imposed much higher fitness costs than the same phage pair in the reverse order. Together, these data suggest that phage combinations can be optimized to limit the strength of evolved resistances while maximizing their associated fitness costs to promote the long-term efficacy of phage therapy. American Society for Microbiology 2019-09-24 /pmc/articles/PMC6759759/ /pubmed/31551330 http://dx.doi.org/10.1128/mBio.01652-19 Text en Copyright © 2019 Wright et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Wright, Rosanna C. T. Friman, Ville-Petri Smith, Margaret C. M. Brockhurst, Michael A. Resistance Evolution against Phage Combinations Depends on the Timing and Order of Exposure |
title | Resistance Evolution against Phage Combinations Depends on the Timing and Order of Exposure |
title_full | Resistance Evolution against Phage Combinations Depends on the Timing and Order of Exposure |
title_fullStr | Resistance Evolution against Phage Combinations Depends on the Timing and Order of Exposure |
title_full_unstemmed | Resistance Evolution against Phage Combinations Depends on the Timing and Order of Exposure |
title_short | Resistance Evolution against Phage Combinations Depends on the Timing and Order of Exposure |
title_sort | resistance evolution against phage combinations depends on the timing and order of exposure |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6759759/ https://www.ncbi.nlm.nih.gov/pubmed/31551330 http://dx.doi.org/10.1128/mBio.01652-19 |
work_keys_str_mv | AT wrightrosannact resistanceevolutionagainstphagecombinationsdependsonthetimingandorderofexposure AT frimanvillepetri resistanceevolutionagainstphagecombinationsdependsonthetimingandorderofexposure AT smithmargaretcm resistanceevolutionagainstphagecombinationsdependsonthetimingandorderofexposure AT brockhurstmichaela resistanceevolutionagainstphagecombinationsdependsonthetimingandorderofexposure |