Cargando…
Massive computational acceleration by using neural networks to emulate mechanism-based biological models
For many biological applications, exploration of the massive parametric space of a mechanism-based model can impose a prohibitive computational demand. To overcome this limitation, we present a framework to improve computational efficiency by orders of magnitude. The key concept is to train a neural...
Autores principales: | Wang, Shangying, Fan, Kai, Luo, Nan, Cao, Yangxiaolu, Wu, Feilun, Zhang, Carolyn, Heller, Katherine A., You, Lingchong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761138/ https://www.ncbi.nlm.nih.gov/pubmed/31554788 http://dx.doi.org/10.1038/s41467-019-12342-y |
Ejemplares similares
-
Processing Oscillatory Signals by Incoherent Feedforward Loops
por: Zhang, Carolyn, et al.
Publicado: (2016) -
Towards practical and massively parallel quantum computing emulation for quantum chemistry
por: Shang, Honghui, et al.
Publicado: (2023) -
Modulation of microbial community dynamics by spatial partitioning
por: Wu, Feilun, et al.
Publicado: (2022) -
Repulsive expansion dynamics in colony growth and gene expression
por: Cao, Yangxiaolu, et al.
Publicado: (2021) -
Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks
por: Kungl, Akos F., et al.
Publicado: (2019)