Cargando…

Design and optimization of crocetin loaded PLGA nanoparticles against diabetic nephropathy via suppression of inflammatory biomarkers: a formulation approach to preclinical study

Diabetic nephropathy (DN) is a serious complication of diabetes mellitus whose expand process is linked with the fibrosis, renal hypertrophy and inflammation. The current study was to formulate and optimize the nano-formulation of crocetin (CT-PLGA-NPs) against Streptozotocin-induced renal nephropat...

Descripción completa

Detalles Bibliográficos
Autor principal: Yang, Xiaodong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761602/
https://www.ncbi.nlm.nih.gov/pubmed/31524015
http://dx.doi.org/10.1080/10717544.2019.1642417
Descripción
Sumario:Diabetic nephropathy (DN) is a serious complication of diabetes mellitus whose expand process is linked with the fibrosis, renal hypertrophy and inflammation. The current study was to formulate and optimize the nano-formulation of crocetin (CT-PLGA-NPs) against Streptozotocin-induced renal nephropathy in rats. Double emulsion evaporation technique was used for the preparation of CT-PLGA-NPs. CT-PLGA-NPs were scrutinized for polydispersity index, size, gastric stability, entrapment, drug-loading capacity and in-vitro drug release and in vivo preclinical study. Single intraperitoneal injection of streptozotocin (STZ) (55 mg/kg) and rats were divided into different group. Renal function and metabolic parameters of urine and serum were estimated. Fibrotic protein, renal pro-inflammatory cytokines and degree of renal damage expression were also determined. We also estimated the fibronectin, type IV collagen and transforming growth factor-β1 for a possible mechanism of action. Crocetin supplement (10 mg/kg) and CT-PLGA-NPs exhibited the accumulation of the drug in kidney and liver of diabetic rats. Crocetin reduced the BGL and enhanced plasma insulin and body weight. Dose dependent treatment of crocetin significantly (p < .001) down-regulated the expression of renal tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin (IL)-1β (IL-1β) and Monocyte Chemoattractant Protein-1 (MCP-1). Crocetin significantly (p < .001) altered the expression of fibronectin, type IV collagen, and transforming growth factor-β1 (TGF-1β). Crocetin significantly (p < .001) down-regulated the protein kinase C activity and the expression of nuclear factor κB (NF-κB) p65 activity and protein production in renal tissue. On the basis of the available result, we can conclude that nano-formulation of crocetin could attenuate the diabetic nephropathy via antifibrotic and anti-inflammatory effect.