Cargando…

A Temperature-Insensitive Resonant Pressure Micro Sensor Based on Silicon-on-Glass Vacuum Packaging

This paper presents a temperature-insensitive resonant pressure sensor, which is mainly composed of a silicon-on-insulator (SOI) wafer for pressure measurements and a silicon-on-glass (SOG) cap for vacuum packaging. The variations of pressure under measurement bend the pressure sensitive diaphragm a...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Pengcheng, Lu, Yulan, Xiang, Chao, Wang, Junbo, Chen, Deyong, Chen, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767015/
https://www.ncbi.nlm.nih.gov/pubmed/31500306
http://dx.doi.org/10.3390/s19183866
Descripción
Sumario:This paper presents a temperature-insensitive resonant pressure sensor, which is mainly composed of a silicon-on-insulator (SOI) wafer for pressure measurements and a silicon-on-glass (SOG) cap for vacuum packaging. The variations of pressure under measurement bend the pressure sensitive diaphragm and regulate the intrinsic frequencies of the resonators in the device layer. While, variations of temperature cannot significantly change the intrinsic frequencies of the resonators, due to the SOG cap to offset generated thermal stress. Numerical simulations, based on finite element analysis, were conducted to calculate the residual thermal stress and optimize the sensing structures. Experimental results show that the Q-factors of the resonators are higher than 16,000, with a differential pressure sensitivity of 11.89 Hz/kPa, a nonlinearity of 0.01% F.S and a low fitting error of 0.01% F.S with the pressure varying from 100 kPa to 1000 kPa. In particular, a temperature sensitivity of ~1 Hz/°C was obtained in the range of −45 °C to 65 °C, which is one order of magnitude lower than the previously reported counterparts.