Cargando…
DNA hypermethylation of Fgf16 and Tbx22 associated with cleft palate during palatal fusion
OBJECTIVE: Cleft palate (CP) is a congenital birth defect caused by the failure of palatal fusion. Little is known about the potential role of DNA methylation in the pathogenesis of CP. This study aimed to explore the potential role of DNA methylation in the mechanism of CP. METHODOLOGY: We establis...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Faculdade De Odontologia De Bauru - USP
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6768118/ https://www.ncbi.nlm.nih.gov/pubmed/31596367 http://dx.doi.org/10.1590/1678-7757-2018-0649 |
_version_ | 1783455056841932800 |
---|---|
author | Shu, Xuan Dong, Zejun Cheng, Liuhanghang Shu, Shenyou |
author_facet | Shu, Xuan Dong, Zejun Cheng, Liuhanghang Shu, Shenyou |
author_sort | Shu, Xuan |
collection | PubMed |
description | OBJECTIVE: Cleft palate (CP) is a congenital birth defect caused by the failure of palatal fusion. Little is known about the potential role of DNA methylation in the pathogenesis of CP. This study aimed to explore the potential role of DNA methylation in the mechanism of CP. METHODOLOGY: We established an all-trans retinoic acid (ATRA)-induced CP model in C57BL/6J mice and used methylation-dependent restriction enzymes (MethylRAD, FspEI) combined with high-throughput sequencing (HiSeq X Ten) to compare genome-wide DNA methylation profiles of embryonic mouse palatal tissues, between embryos from ATRA-treated vs. untreated mice, at embryonic gestation day 14.5 (E14.5) (n=3 per group). To confirm differentially methylated levels of susceptible genes, real-time quantitative PCR (qPCR) was used to correlate expression of differentially methylated genes related to CP. RESULTS: We identified 196 differentially methylated genes, including 17,298 differentially methylated CCGG sites between ATRA-treated vs. untreated embryonic mouse palatal tissues (P<0.05, log(2)FC>1). The CP-related genes Fgf16 (P=0.008, log(2)FC=1.13) and Tbx22 (P=0.011, log(2)FC=1.64,) were hypermethylated. Analysis of Fgf16 and Tbx22, using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), identified 3 GO terms and 1 KEGG pathway functionally related to palatal fusion. The qPCR showed that changes in expression level negatively correlated with methylation levels. CONCLUSIONS: Taken together, these results suggest that hypermethylation of Fgf16 and Tbx22 is associated with decreased gene expression, which might be responsible for developmental failure of palatal fusion, eventually resulting in the formation of CP. |
format | Online Article Text |
id | pubmed-6768118 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Faculdade De Odontologia De Bauru - USP |
record_format | MEDLINE/PubMed |
spelling | pubmed-67681182019-12-04 DNA hypermethylation of Fgf16 and Tbx22 associated with cleft palate during palatal fusion Shu, Xuan Dong, Zejun Cheng, Liuhanghang Shu, Shenyou J Appl Oral Sci Original Article OBJECTIVE: Cleft palate (CP) is a congenital birth defect caused by the failure of palatal fusion. Little is known about the potential role of DNA methylation in the pathogenesis of CP. This study aimed to explore the potential role of DNA methylation in the mechanism of CP. METHODOLOGY: We established an all-trans retinoic acid (ATRA)-induced CP model in C57BL/6J mice and used methylation-dependent restriction enzymes (MethylRAD, FspEI) combined with high-throughput sequencing (HiSeq X Ten) to compare genome-wide DNA methylation profiles of embryonic mouse palatal tissues, between embryos from ATRA-treated vs. untreated mice, at embryonic gestation day 14.5 (E14.5) (n=3 per group). To confirm differentially methylated levels of susceptible genes, real-time quantitative PCR (qPCR) was used to correlate expression of differentially methylated genes related to CP. RESULTS: We identified 196 differentially methylated genes, including 17,298 differentially methylated CCGG sites between ATRA-treated vs. untreated embryonic mouse palatal tissues (P<0.05, log(2)FC>1). The CP-related genes Fgf16 (P=0.008, log(2)FC=1.13) and Tbx22 (P=0.011, log(2)FC=1.64,) were hypermethylated. Analysis of Fgf16 and Tbx22, using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), identified 3 GO terms and 1 KEGG pathway functionally related to palatal fusion. The qPCR showed that changes in expression level negatively correlated with methylation levels. CONCLUSIONS: Taken together, these results suggest that hypermethylation of Fgf16 and Tbx22 is associated with decreased gene expression, which might be responsible for developmental failure of palatal fusion, eventually resulting in the formation of CP. Faculdade De Odontologia De Bauru - USP 2019-10-07 /pmc/articles/PMC6768118/ /pubmed/31596367 http://dx.doi.org/10.1590/1678-7757-2018-0649 Text en https://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Shu, Xuan Dong, Zejun Cheng, Liuhanghang Shu, Shenyou DNA hypermethylation of Fgf16 and Tbx22 associated with cleft palate during palatal fusion |
title | DNA hypermethylation of Fgf16 and Tbx22 associated with cleft palate during palatal fusion |
title_full | DNA hypermethylation of Fgf16 and Tbx22 associated with cleft palate during palatal fusion |
title_fullStr | DNA hypermethylation of Fgf16 and Tbx22 associated with cleft palate during palatal fusion |
title_full_unstemmed | DNA hypermethylation of Fgf16 and Tbx22 associated with cleft palate during palatal fusion |
title_short | DNA hypermethylation of Fgf16 and Tbx22 associated with cleft palate during palatal fusion |
title_sort | dna hypermethylation of fgf16 and tbx22 associated with cleft palate during palatal fusion |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6768118/ https://www.ncbi.nlm.nih.gov/pubmed/31596367 http://dx.doi.org/10.1590/1678-7757-2018-0649 |
work_keys_str_mv | AT shuxuan dnahypermethylationoffgf16andtbx22associatedwithcleftpalateduringpalatalfusion AT dongzejun dnahypermethylationoffgf16andtbx22associatedwithcleftpalateduringpalatalfusion AT chengliuhanghang dnahypermethylationoffgf16andtbx22associatedwithcleftpalateduringpalatalfusion AT shushenyou dnahypermethylationoffgf16andtbx22associatedwithcleftpalateduringpalatalfusion |