Cargando…
(Epi)genomic heterogeneity of pancreatic islet function and failure in type 2 diabetes
BACKGROUND: Pancreatic Islets of Langerhans are heterogeneous tissues consisting of multiple endocrine cell types that carry out distinct yet coordinated roles to regulate blood glucose homeostasis. Islet dysfunction and specifically failure of the beta cells to secrete adequate insulin are known pr...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6768501/ https://www.ncbi.nlm.nih.gov/pubmed/31500827 http://dx.doi.org/10.1016/j.molmet.2019.06.002 |
_version_ | 1783455105956184064 |
---|---|
author | Lawlor, Nathan Stitzel, Michael L. |
author_facet | Lawlor, Nathan Stitzel, Michael L. |
author_sort | Lawlor, Nathan |
collection | PubMed |
description | BACKGROUND: Pancreatic Islets of Langerhans are heterogeneous tissues consisting of multiple endocrine cell types that carry out distinct yet coordinated roles to regulate blood glucose homeostasis. Islet dysfunction and specifically failure of the beta cells to secrete adequate insulin are known precursors to type 2 diabetes (T2D) onset. However, the exact genetic, (epi)genomic, and environmental mechanisms that contribute to islet failure, and ultimately to T2D pathogenesis, require further elucidation. SCOPE OF REVIEW: This review summarizes efforts and advances in dissection of the complex genetic underpinnings of islet function and resilience in T2D pathogenesis. In this review, we will highlight results of the latest T2D genome-wide association study (GWAS) and discuss how these data are being combined with clinical measures in patients to uncover putative T2D subtypes and with functional (epi)genomic studies in islets to understand the genetic programming of islet cell identity, function, and adaptation. Finally, we discuss new and important opportunities to address major knowledge gaps in our understanding of islet (dys)function in T2D risk and progression. MAJOR CONCLUSIONS: Genetic variation exerts clear effects on the islet epigenome, regulatory element usage, and gene expression. Future (epi)genomic comparative analyses between T2D and normal islets should incorporate genetics to distinguish patient-specific from disease-specific differences. Incorporating genotype information into future analyses and studies will also enable more precise insights into the molecular genetics of islet deficiency and failure in T2D risk, and should ultimately contribute to a stratified view of T2D and more precise treatment strategies. Islet cellular heterogeneity continues to remain a challenge for understanding the associations between islet failure and T2D development. Further efforts to obtain purified islet cell type populations and determine the specific genetic and environmental effects on each will help address this. Beyond observation of islets at steady state conditions, more research of islet stress and stimulation responses are needed to understand the transition of these tissues from a healthy to diseased state. Together, focusing on these objectives will provide more opportunities to prevent, treat, and manage T2D. |
format | Online Article Text |
id | pubmed-6768501 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-67685012019-10-07 (Epi)genomic heterogeneity of pancreatic islet function and failure in type 2 diabetes Lawlor, Nathan Stitzel, Michael L. Mol Metab Review BACKGROUND: Pancreatic Islets of Langerhans are heterogeneous tissues consisting of multiple endocrine cell types that carry out distinct yet coordinated roles to regulate blood glucose homeostasis. Islet dysfunction and specifically failure of the beta cells to secrete adequate insulin are known precursors to type 2 diabetes (T2D) onset. However, the exact genetic, (epi)genomic, and environmental mechanisms that contribute to islet failure, and ultimately to T2D pathogenesis, require further elucidation. SCOPE OF REVIEW: This review summarizes efforts and advances in dissection of the complex genetic underpinnings of islet function and resilience in T2D pathogenesis. In this review, we will highlight results of the latest T2D genome-wide association study (GWAS) and discuss how these data are being combined with clinical measures in patients to uncover putative T2D subtypes and with functional (epi)genomic studies in islets to understand the genetic programming of islet cell identity, function, and adaptation. Finally, we discuss new and important opportunities to address major knowledge gaps in our understanding of islet (dys)function in T2D risk and progression. MAJOR CONCLUSIONS: Genetic variation exerts clear effects on the islet epigenome, regulatory element usage, and gene expression. Future (epi)genomic comparative analyses between T2D and normal islets should incorporate genetics to distinguish patient-specific from disease-specific differences. Incorporating genotype information into future analyses and studies will also enable more precise insights into the molecular genetics of islet deficiency and failure in T2D risk, and should ultimately contribute to a stratified view of T2D and more precise treatment strategies. Islet cellular heterogeneity continues to remain a challenge for understanding the associations between islet failure and T2D development. Further efforts to obtain purified islet cell type populations and determine the specific genetic and environmental effects on each will help address this. Beyond observation of islets at steady state conditions, more research of islet stress and stimulation responses are needed to understand the transition of these tissues from a healthy to diseased state. Together, focusing on these objectives will provide more opportunities to prevent, treat, and manage T2D. Elsevier 2019-09-06 /pmc/articles/PMC6768501/ /pubmed/31500827 http://dx.doi.org/10.1016/j.molmet.2019.06.002 Text en © 2019 Published by Elsevier GmbH. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Review Lawlor, Nathan Stitzel, Michael L. (Epi)genomic heterogeneity of pancreatic islet function and failure in type 2 diabetes |
title | (Epi)genomic heterogeneity of pancreatic islet function and failure in type 2 diabetes |
title_full | (Epi)genomic heterogeneity of pancreatic islet function and failure in type 2 diabetes |
title_fullStr | (Epi)genomic heterogeneity of pancreatic islet function and failure in type 2 diabetes |
title_full_unstemmed | (Epi)genomic heterogeneity of pancreatic islet function and failure in type 2 diabetes |
title_short | (Epi)genomic heterogeneity of pancreatic islet function and failure in type 2 diabetes |
title_sort | (epi)genomic heterogeneity of pancreatic islet function and failure in type 2 diabetes |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6768501/ https://www.ncbi.nlm.nih.gov/pubmed/31500827 http://dx.doi.org/10.1016/j.molmet.2019.06.002 |
work_keys_str_mv | AT lawlornathan epigenomicheterogeneityofpancreaticisletfunctionandfailureintype2diabetes AT stitzelmichaell epigenomicheterogeneityofpancreaticisletfunctionandfailureintype2diabetes |