Cargando…
Allosteric gate modulation confers K(+) coupling in glutamate transporters
Excitatory amino acid transporters (EAATs) mediate glial and neuronal glutamate uptake to terminate synaptic transmission and to ensure low resting glutamate concentrations. Effective glutamate uptake is achieved by cotransport with 3 Na(+) and 1 H(+), in exchange with 1 K(+). The underlying princip...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769379/ https://www.ncbi.nlm.nih.gov/pubmed/31506973 http://dx.doi.org/10.15252/embj.2019101468 |
_version_ | 1783455230081368064 |
---|---|
author | Kortzak, Daniel Alleva, Claudia Weyand, Ingo Ewers, David Zimmermann, Meike I Franzen, Arne Machtens, Jan‐Philipp Fahlke, Christoph |
author_facet | Kortzak, Daniel Alleva, Claudia Weyand, Ingo Ewers, David Zimmermann, Meike I Franzen, Arne Machtens, Jan‐Philipp Fahlke, Christoph |
author_sort | Kortzak, Daniel |
collection | PubMed |
description | Excitatory amino acid transporters (EAATs) mediate glial and neuronal glutamate uptake to terminate synaptic transmission and to ensure low resting glutamate concentrations. Effective glutamate uptake is achieved by cotransport with 3 Na(+) and 1 H(+), in exchange with 1 K(+). The underlying principles of this complex transport stoichiometry remain poorly understood. We use molecular dynamics simulations and electrophysiological experiments to elucidate how mammalian EAATs harness K(+) gradients, unlike their K(+)‐independent prokaryotic homologues. Glutamate transport is achieved via elevator‐like translocation of the transport domain. In EAATs, glutamate‐free re‐translocation is prevented by an external gate remaining open until K(+) binding closes and locks the gate. Prokaryotic Glt(Ph) contains the same K(+)‐binding site, but the gate can close without K(+). Our study provides a comprehensive description of K(+)‐dependent glutamate transport and reveals a hitherto unknown allosteric coupling mechanism that permits adaptions of the transport stoichiometry without affecting ion or substrate binding. |
format | Online Article Text |
id | pubmed-6769379 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-67693792019-10-03 Allosteric gate modulation confers K(+) coupling in glutamate transporters Kortzak, Daniel Alleva, Claudia Weyand, Ingo Ewers, David Zimmermann, Meike I Franzen, Arne Machtens, Jan‐Philipp Fahlke, Christoph EMBO J Articles Excitatory amino acid transporters (EAATs) mediate glial and neuronal glutamate uptake to terminate synaptic transmission and to ensure low resting glutamate concentrations. Effective glutamate uptake is achieved by cotransport with 3 Na(+) and 1 H(+), in exchange with 1 K(+). The underlying principles of this complex transport stoichiometry remain poorly understood. We use molecular dynamics simulations and electrophysiological experiments to elucidate how mammalian EAATs harness K(+) gradients, unlike their K(+)‐independent prokaryotic homologues. Glutamate transport is achieved via elevator‐like translocation of the transport domain. In EAATs, glutamate‐free re‐translocation is prevented by an external gate remaining open until K(+) binding closes and locks the gate. Prokaryotic Glt(Ph) contains the same K(+)‐binding site, but the gate can close without K(+). Our study provides a comprehensive description of K(+)‐dependent glutamate transport and reveals a hitherto unknown allosteric coupling mechanism that permits adaptions of the transport stoichiometry without affecting ion or substrate binding. John Wiley and Sons Inc. 2019-09-10 2019-10-01 /pmc/articles/PMC6769379/ /pubmed/31506973 http://dx.doi.org/10.15252/embj.2019101468 Text en © 2019 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Kortzak, Daniel Alleva, Claudia Weyand, Ingo Ewers, David Zimmermann, Meike I Franzen, Arne Machtens, Jan‐Philipp Fahlke, Christoph Allosteric gate modulation confers K(+) coupling in glutamate transporters |
title | Allosteric gate modulation confers K(+) coupling in glutamate transporters |
title_full | Allosteric gate modulation confers K(+) coupling in glutamate transporters |
title_fullStr | Allosteric gate modulation confers K(+) coupling in glutamate transporters |
title_full_unstemmed | Allosteric gate modulation confers K(+) coupling in glutamate transporters |
title_short | Allosteric gate modulation confers K(+) coupling in glutamate transporters |
title_sort | allosteric gate modulation confers k(+) coupling in glutamate transporters |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769379/ https://www.ncbi.nlm.nih.gov/pubmed/31506973 http://dx.doi.org/10.15252/embj.2019101468 |
work_keys_str_mv | AT kortzakdaniel allostericgatemodulationconferskcouplinginglutamatetransporters AT allevaclaudia allostericgatemodulationconferskcouplinginglutamatetransporters AT weyandingo allostericgatemodulationconferskcouplinginglutamatetransporters AT ewersdavid allostericgatemodulationconferskcouplinginglutamatetransporters AT zimmermannmeikei allostericgatemodulationconferskcouplinginglutamatetransporters AT franzenarne allostericgatemodulationconferskcouplinginglutamatetransporters AT machtensjanphilipp allostericgatemodulationconferskcouplinginglutamatetransporters AT fahlkechristoph allostericgatemodulationconferskcouplinginglutamatetransporters |