Cargando…
Improvement of Oxidative Status, Milk and Cheese Production, and Food Sustainability Indexes by Addition of Durum Wheat Bran to Dairy Cows’ Diet
SIMPLE SUMMARY: In the near future, the expected increase in world population will enhance feed versus food competition between animals and humans to face the increasing demand by humans. For this reason, it is of paramount importance to feed ruminants with sources alternative to those representing...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769901/ https://www.ncbi.nlm.nih.gov/pubmed/31540437 http://dx.doi.org/10.3390/ani9090698 |
_version_ | 1783455345511759872 |
---|---|
author | Bonanno, Adriana Di Grigoli, Antonino Todaro, Massimo Alabiso, Marco Vitale, Francesca Di Trana, Adriana Giorgio, Daniela Settanni, Luca Gaglio, Raimondo Laddomada, Barbara Di Miceli, Giuseppe |
author_facet | Bonanno, Adriana Di Grigoli, Antonino Todaro, Massimo Alabiso, Marco Vitale, Francesca Di Trana, Adriana Giorgio, Daniela Settanni, Luca Gaglio, Raimondo Laddomada, Barbara Di Miceli, Giuseppe |
author_sort | Bonanno, Adriana |
collection | PubMed |
description | SIMPLE SUMMARY: In the near future, the expected increase in world population will enhance feed versus food competition between animals and humans to face the increasing demand by humans. For this reason, it is of paramount importance to feed ruminants with sources alternative to those representing themselves foods for humans. Durum wheat bran (DWB), similar to other by-products of the agri-food industry, can meet this need, its fiber content is high and represents also a remarkable source of phenolic acids, especially ferulic acid. This compound exerts antioxidant properties improving the health status of animals, and allows the production of functional foods more and more requested by consumers. Accordingly, this experiment demonstrated the suitability of using DWB for dairy cows feeding, because it led to clear advantages in terms of oxidative status of animals, quality of dairy products, and feeding costs. Furthermore, DWB improved the human-edible feed conversion efficiency reducing the use of human-edible feed. ABSTRACT: Durum wheat bran (DWB) is a by-product mostly used in feeding ruminants, contributing to decrease in the utilization of feeds suitable as foods for human consumption, thus improving the sustainability of livestock production. However, the potential benefits of DWB, due to its content in phenolic acids, mainly consisting of ferulic acid with antioxidant properties, have not been well clarified yet. Accordingly, in this experiment, 36 lactating cows divided into three groups received, over a period of 100 days, one of three concentrates including DWB at 0% (DWB0), 10% (DWB10), or 20% (DWB20). The concentrates were formulated to be isoproteic and isoenergetic and, to balance the higher fiber content of the concentrates with DWB, the hay in the diets was slightly reduced. During the trial, the group feed intake and the individual milk production were monitored, and cheese was made with bulk milk from each group. Milk yield and microbiological characteristics of milk and cheese were similar among groups, indicating no DWB effect on cows performance and fermentation process. Milk from DWB20 group resulted slightly higher in casein and curd firmness (a(2r)). In cows fed DWB, the higher polyphenol intake was responsible for higher blood contents of these bioactive compounds, that seemed to have contributed in reducing the level of reactive oxygen metabolites (ROMs), which were higher in DWB0 cows. DWB20 cheeses showed a higher polyphenol content, lower number of peroxides, and higher antioxidant capacity than DWB0 cheeses. DWB20 and DWB10 diets resulted less expensive. In addition, the DWB20 group showed the best indexes heFCE (human edible feed conversion efficiency = milk/human edible feed) and NFP (net food production = milk − human edible food), expressed as crude protein or gross energy. In conclusion, the DWB fed to dairy cows at 12% of diet dry matter (DM) can lead to benefits, such as the improvement of oxidative status of cows, milk quality, shelf-life, and functional properties of cheese, and might contribute to reduce the feeding cost and limit the human-animal competition for feeding sources. |
format | Online Article Text |
id | pubmed-6769901 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67699012019-10-30 Improvement of Oxidative Status, Milk and Cheese Production, and Food Sustainability Indexes by Addition of Durum Wheat Bran to Dairy Cows’ Diet Bonanno, Adriana Di Grigoli, Antonino Todaro, Massimo Alabiso, Marco Vitale, Francesca Di Trana, Adriana Giorgio, Daniela Settanni, Luca Gaglio, Raimondo Laddomada, Barbara Di Miceli, Giuseppe Animals (Basel) Article SIMPLE SUMMARY: In the near future, the expected increase in world population will enhance feed versus food competition between animals and humans to face the increasing demand by humans. For this reason, it is of paramount importance to feed ruminants with sources alternative to those representing themselves foods for humans. Durum wheat bran (DWB), similar to other by-products of the agri-food industry, can meet this need, its fiber content is high and represents also a remarkable source of phenolic acids, especially ferulic acid. This compound exerts antioxidant properties improving the health status of animals, and allows the production of functional foods more and more requested by consumers. Accordingly, this experiment demonstrated the suitability of using DWB for dairy cows feeding, because it led to clear advantages in terms of oxidative status of animals, quality of dairy products, and feeding costs. Furthermore, DWB improved the human-edible feed conversion efficiency reducing the use of human-edible feed. ABSTRACT: Durum wheat bran (DWB) is a by-product mostly used in feeding ruminants, contributing to decrease in the utilization of feeds suitable as foods for human consumption, thus improving the sustainability of livestock production. However, the potential benefits of DWB, due to its content in phenolic acids, mainly consisting of ferulic acid with antioxidant properties, have not been well clarified yet. Accordingly, in this experiment, 36 lactating cows divided into three groups received, over a period of 100 days, one of three concentrates including DWB at 0% (DWB0), 10% (DWB10), or 20% (DWB20). The concentrates were formulated to be isoproteic and isoenergetic and, to balance the higher fiber content of the concentrates with DWB, the hay in the diets was slightly reduced. During the trial, the group feed intake and the individual milk production were monitored, and cheese was made with bulk milk from each group. Milk yield and microbiological characteristics of milk and cheese were similar among groups, indicating no DWB effect on cows performance and fermentation process. Milk from DWB20 group resulted slightly higher in casein and curd firmness (a(2r)). In cows fed DWB, the higher polyphenol intake was responsible for higher blood contents of these bioactive compounds, that seemed to have contributed in reducing the level of reactive oxygen metabolites (ROMs), which were higher in DWB0 cows. DWB20 cheeses showed a higher polyphenol content, lower number of peroxides, and higher antioxidant capacity than DWB0 cheeses. DWB20 and DWB10 diets resulted less expensive. In addition, the DWB20 group showed the best indexes heFCE (human edible feed conversion efficiency = milk/human edible feed) and NFP (net food production = milk − human edible food), expressed as crude protein or gross energy. In conclusion, the DWB fed to dairy cows at 12% of diet dry matter (DM) can lead to benefits, such as the improvement of oxidative status of cows, milk quality, shelf-life, and functional properties of cheese, and might contribute to reduce the feeding cost and limit the human-animal competition for feeding sources. MDPI 2019-09-18 /pmc/articles/PMC6769901/ /pubmed/31540437 http://dx.doi.org/10.3390/ani9090698 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bonanno, Adriana Di Grigoli, Antonino Todaro, Massimo Alabiso, Marco Vitale, Francesca Di Trana, Adriana Giorgio, Daniela Settanni, Luca Gaglio, Raimondo Laddomada, Barbara Di Miceli, Giuseppe Improvement of Oxidative Status, Milk and Cheese Production, and Food Sustainability Indexes by Addition of Durum Wheat Bran to Dairy Cows’ Diet |
title | Improvement of Oxidative Status, Milk and Cheese Production, and Food Sustainability Indexes by Addition of Durum Wheat Bran to Dairy Cows’ Diet |
title_full | Improvement of Oxidative Status, Milk and Cheese Production, and Food Sustainability Indexes by Addition of Durum Wheat Bran to Dairy Cows’ Diet |
title_fullStr | Improvement of Oxidative Status, Milk and Cheese Production, and Food Sustainability Indexes by Addition of Durum Wheat Bran to Dairy Cows’ Diet |
title_full_unstemmed | Improvement of Oxidative Status, Milk and Cheese Production, and Food Sustainability Indexes by Addition of Durum Wheat Bran to Dairy Cows’ Diet |
title_short | Improvement of Oxidative Status, Milk and Cheese Production, and Food Sustainability Indexes by Addition of Durum Wheat Bran to Dairy Cows’ Diet |
title_sort | improvement of oxidative status, milk and cheese production, and food sustainability indexes by addition of durum wheat bran to dairy cows’ diet |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769901/ https://www.ncbi.nlm.nih.gov/pubmed/31540437 http://dx.doi.org/10.3390/ani9090698 |
work_keys_str_mv | AT bonannoadriana improvementofoxidativestatusmilkandcheeseproductionandfoodsustainabilityindexesbyadditionofdurumwheatbrantodairycowsdiet AT digrigoliantonino improvementofoxidativestatusmilkandcheeseproductionandfoodsustainabilityindexesbyadditionofdurumwheatbrantodairycowsdiet AT todaromassimo improvementofoxidativestatusmilkandcheeseproductionandfoodsustainabilityindexesbyadditionofdurumwheatbrantodairycowsdiet AT alabisomarco improvementofoxidativestatusmilkandcheeseproductionandfoodsustainabilityindexesbyadditionofdurumwheatbrantodairycowsdiet AT vitalefrancesca improvementofoxidativestatusmilkandcheeseproductionandfoodsustainabilityindexesbyadditionofdurumwheatbrantodairycowsdiet AT ditranaadriana improvementofoxidativestatusmilkandcheeseproductionandfoodsustainabilityindexesbyadditionofdurumwheatbrantodairycowsdiet AT giorgiodaniela improvementofoxidativestatusmilkandcheeseproductionandfoodsustainabilityindexesbyadditionofdurumwheatbrantodairycowsdiet AT settanniluca improvementofoxidativestatusmilkandcheeseproductionandfoodsustainabilityindexesbyadditionofdurumwheatbrantodairycowsdiet AT gaglioraimondo improvementofoxidativestatusmilkandcheeseproductionandfoodsustainabilityindexesbyadditionofdurumwheatbrantodairycowsdiet AT laddomadabarbara improvementofoxidativestatusmilkandcheeseproductionandfoodsustainabilityindexesbyadditionofdurumwheatbrantodairycowsdiet AT dimiceligiuseppe improvementofoxidativestatusmilkandcheeseproductionandfoodsustainabilityindexesbyadditionofdurumwheatbrantodairycowsdiet |