Cargando…

Anti-Microbiological, Anti-Hyperglycemic and Anti-Obesity Potency of Natural Antioxidants in Fruit Fractions of Saskatoon Berry

The aim of the present work was to evaluate for content of phytochemicals (monophosphate nucleotides, free amino acids, polyphenols), and for anti-microbiological, anti-diabetic (ability to inhibit pancreatic lipase, α-glucosidase, and α-amylase), and antioxidant activities in seven selected fruit a...

Descripción completa

Detalles Bibliográficos
Autores principales: Lachowicz, Sabina, Wiśniewski, Rafał, Ochmian, Ireneusz, Drzymała, Katarzyna, Pluta, Stanisław
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770076/
https://www.ncbi.nlm.nih.gov/pubmed/31540276
http://dx.doi.org/10.3390/antiox8090397
Descripción
Sumario:The aim of the present work was to evaluate for content of phytochemicals (monophosphate nucleotides, free amino acids, polyphenols), and for anti-microbiological, anti-diabetic (ability to inhibit pancreatic lipase, α-glucosidase, and α-amylase), and antioxidant activities in seven selected fruit and fruit fractions of Amelanchier alnifolia. Most of the fruit and fruit fractions analyzed in this study have not been examined in this respect until now. The content of monophosphate nucleotides and free amino acids were tested by ultra-performance liquid chromatography coupled with photodiode array detector and electrospray ionization-mass spectrometry (UPLC-PDA-ESI-MS). The distribution of the examined compounds and biological activity differed significantly depending on the tested fruit and parts of the fruit. Cultivars “Smoky” and “Thiessen” had a high content of essential free amino acids, monophosphate nucleotides, and the highest antioxidant activity. They were also accountable for the high ability to inhibit Enterococcus hirae (anti-bacterial activity), of activity toward α-amylase, α-glucosidase, and pancreatic lipase. Moreover, the fruit peel was abundant in polyphenolic compounds and showed the highest antioxidative activity, which were strongly correlated with each other. In addition, the peel was characterized by a high concentration of monophosphate nucleotides, free amino acids, and were responsible above all for the strong ability to inhibit pancreatic lipase enzymes contributing to the development of obesity. The seeds were rich in uridine 5’-monophosphate, and total essential and non-essential free amino acids, whose contents correlated with the inhibitory activity toward α-amylase and α-glucosidase. The fruit flesh showed a high content of total free amino acids (hydroxy-L-proline, O-phosphoethanolamine, L-citruline). There was a positive correlation between antioxidant capacity and the content of polyphenolic compounds, nucleotide, and ability to inhibit pancreatic lipase, and between anti-hyperglycemic and free amino acids in fruits and fruit fractions. Therefore, the tested fruit of A. alnifolia and their fractions could be essential ingredients of new functional products and/or probiotic food.