Cargando…
The Effect of 2-Ketobutyrate on Mitochondrial Substrate-Level Phosphorylation
The reaction catalyzed by succinate-CoA ligase in the mitochondrial matrix yields a high-energy phosphate when operating towards hydrolysis of the thioester bond of succinyl-CoA, known as mitochondrial substrate-level phosphorylation (mSLP). The catabolism of several metabolites converge to succinyl...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776489/ https://www.ncbi.nlm.nih.gov/pubmed/30810978 http://dx.doi.org/10.1007/s11064-019-02759-8 |
Sumario: | The reaction catalyzed by succinate-CoA ligase in the mitochondrial matrix yields a high-energy phosphate when operating towards hydrolysis of the thioester bond of succinyl-CoA, known as mitochondrial substrate-level phosphorylation (mSLP). The catabolism of several metabolites converge to succinyl-CoA but through different biochemical pathways. Among them, threonine, serine and methionine catabolize to succinyl-CoA through the common intermediate, 2-ketobutyrate. During the course of this pathway 2-ketobutyrate will become succinyl-CoA through propionyl-CoA catabolism, obligatorily passing through an ATP-consuming step substantiated by propionyl-CoA carboxylase. Here, by recording the directionality of the adenine nucleotide translocase while measuring membrane potential we tested the hypothesis that catabolism of 2-ketobutyrate negates mSLP due to the ATP-consuming propionyl-CoA carboxylase step in rotenone-treated, isolated mouse liver and brain mitochondria. 2-Ketobutyrate produced a less negative membrane potential compared to NADH or FADH(2)-linked substrates, which was sensitive to inhibition by rotenone, atpenin and arsenate, implying the involvement of complex I, complex II and a dehydrogenase—most likely branched chain keto-acid dehydrogenase, respectively. Co-addition of 2-ketobutyrate with NADH- or FADH(2)-linked substrates yielded no greater membrane potential than in the presence of substrates alone. However, in the presence of NADH-linked substrates, 2-ketobutyrate prevented mSLP in a dose-dependent manner. Our results imply that despite that 2-ketobutyrate leads to succinyl-CoA formation, obligatory metabolism through propionyl-CoA carboxylase associated with ATP expenditure abolishes mSLP. The provision of metabolites converging to 2-ketobutyrate may be a useful way for manipulating mSLP without using pharmacological or genetic tools. |
---|