Cargando…

High mobility group box protein 1 neutralization therapy in ovine bacteremia: Lessons learned from an ovine septic shock model incorporating intensive care support

Sepsis is a highly complex and often fatal syndrome which varies widely in its clinical manifestations, and therapies that target the underlying uncontrolled immune status in sepsis are needed. The failure of preclinical approaches to provide significant sepsis survival benefit in the clinic is ofte...

Descripción completa

Detalles Bibliográficos
Autores principales: Stevens, Natalie E., Nash, Coralie H., Fraser, Cara K., Kuchel, Tim R., Maiden, Matthew J., Chapman, Marianne J., Diener, Kerrilyn R., Hayball, John D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777221/
https://www.ncbi.nlm.nih.gov/pubmed/31602200
http://dx.doi.org/10.3892/etm.2019.7961
_version_ 1783456590356021248
author Stevens, Natalie E.
Nash, Coralie H.
Fraser, Cara K.
Kuchel, Tim R.
Maiden, Matthew J.
Chapman, Marianne J.
Diener, Kerrilyn R.
Hayball, John D.
author_facet Stevens, Natalie E.
Nash, Coralie H.
Fraser, Cara K.
Kuchel, Tim R.
Maiden, Matthew J.
Chapman, Marianne J.
Diener, Kerrilyn R.
Hayball, John D.
author_sort Stevens, Natalie E.
collection PubMed
description Sepsis is a highly complex and often fatal syndrome which varies widely in its clinical manifestations, and therapies that target the underlying uncontrolled immune status in sepsis are needed. The failure of preclinical approaches to provide significant sepsis survival benefit in the clinic is often attributed to inappropriate animal disease models. It has been demonstrated that high mobility group box protein 1 (HMGB1) blockade can reduce inflammation, mortality and morbidity in experimental sepsis without promoting immunosuppression. Within this study, we explored the use of ovine anti-HMGB1 antibodies in a model of ovine septic shock incorporating intensive care supports (OSSICS). Results: Septic sheep exhibited elevated levels of HMGB1 within 12 h after the induction of sepsis. In this study, sepsis was induced in six anaesthetized adult Border Leicester × Merino ewes via intravenous instillation of E. coli and sheep monitored according to intensive care unit standard protocols for 26 h, with the requirement for noradrenaline as the primary endpoint. Septic sheep exhibited a hyperdynamic circulation, renal dysfunction, deranged coagulation profile and severe metabolic acidosis. Sheep were assigned a severity of illness score, which increased over time. While a therapeutic effect of intravenous anti-HMGB1 antibody could not be observed in this model due to limited animal numbers, a reduced bacterial dose induced a septic syndrome of much lower severity. With modifications including a reduced bacterial dose, a longer timeframe and broad spectrum antibiotics, the OSSICS model may become a robust tool for preclinical assessment of sepsis therapeutics.
format Online
Article
Text
id pubmed-6777221
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-67772212019-10-10 High mobility group box protein 1 neutralization therapy in ovine bacteremia: Lessons learned from an ovine septic shock model incorporating intensive care support Stevens, Natalie E. Nash, Coralie H. Fraser, Cara K. Kuchel, Tim R. Maiden, Matthew J. Chapman, Marianne J. Diener, Kerrilyn R. Hayball, John D. Exp Ther Med Articles Sepsis is a highly complex and often fatal syndrome which varies widely in its clinical manifestations, and therapies that target the underlying uncontrolled immune status in sepsis are needed. The failure of preclinical approaches to provide significant sepsis survival benefit in the clinic is often attributed to inappropriate animal disease models. It has been demonstrated that high mobility group box protein 1 (HMGB1) blockade can reduce inflammation, mortality and morbidity in experimental sepsis without promoting immunosuppression. Within this study, we explored the use of ovine anti-HMGB1 antibodies in a model of ovine septic shock incorporating intensive care supports (OSSICS). Results: Septic sheep exhibited elevated levels of HMGB1 within 12 h after the induction of sepsis. In this study, sepsis was induced in six anaesthetized adult Border Leicester × Merino ewes via intravenous instillation of E. coli and sheep monitored according to intensive care unit standard protocols for 26 h, with the requirement for noradrenaline as the primary endpoint. Septic sheep exhibited a hyperdynamic circulation, renal dysfunction, deranged coagulation profile and severe metabolic acidosis. Sheep were assigned a severity of illness score, which increased over time. While a therapeutic effect of intravenous anti-HMGB1 antibody could not be observed in this model due to limited animal numbers, a reduced bacterial dose induced a septic syndrome of much lower severity. With modifications including a reduced bacterial dose, a longer timeframe and broad spectrum antibiotics, the OSSICS model may become a robust tool for preclinical assessment of sepsis therapeutics. D.A. Spandidos 2019-11 2019-08-30 /pmc/articles/PMC6777221/ /pubmed/31602200 http://dx.doi.org/10.3892/etm.2019.7961 Text en Copyright: © Stevens et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Stevens, Natalie E.
Nash, Coralie H.
Fraser, Cara K.
Kuchel, Tim R.
Maiden, Matthew J.
Chapman, Marianne J.
Diener, Kerrilyn R.
Hayball, John D.
High mobility group box protein 1 neutralization therapy in ovine bacteremia: Lessons learned from an ovine septic shock model incorporating intensive care support
title High mobility group box protein 1 neutralization therapy in ovine bacteremia: Lessons learned from an ovine septic shock model incorporating intensive care support
title_full High mobility group box protein 1 neutralization therapy in ovine bacteremia: Lessons learned from an ovine septic shock model incorporating intensive care support
title_fullStr High mobility group box protein 1 neutralization therapy in ovine bacteremia: Lessons learned from an ovine septic shock model incorporating intensive care support
title_full_unstemmed High mobility group box protein 1 neutralization therapy in ovine bacteremia: Lessons learned from an ovine septic shock model incorporating intensive care support
title_short High mobility group box protein 1 neutralization therapy in ovine bacteremia: Lessons learned from an ovine septic shock model incorporating intensive care support
title_sort high mobility group box protein 1 neutralization therapy in ovine bacteremia: lessons learned from an ovine septic shock model incorporating intensive care support
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777221/
https://www.ncbi.nlm.nih.gov/pubmed/31602200
http://dx.doi.org/10.3892/etm.2019.7961
work_keys_str_mv AT stevensnataliee highmobilitygroupboxprotein1neutralizationtherapyinovinebacteremialessonslearnedfromanovinesepticshockmodelincorporatingintensivecaresupport
AT nashcoralieh highmobilitygroupboxprotein1neutralizationtherapyinovinebacteremialessonslearnedfromanovinesepticshockmodelincorporatingintensivecaresupport
AT frasercarak highmobilitygroupboxprotein1neutralizationtherapyinovinebacteremialessonslearnedfromanovinesepticshockmodelincorporatingintensivecaresupport
AT kucheltimr highmobilitygroupboxprotein1neutralizationtherapyinovinebacteremialessonslearnedfromanovinesepticshockmodelincorporatingintensivecaresupport
AT maidenmatthewj highmobilitygroupboxprotein1neutralizationtherapyinovinebacteremialessonslearnedfromanovinesepticshockmodelincorporatingintensivecaresupport
AT chapmanmariannej highmobilitygroupboxprotein1neutralizationtherapyinovinebacteremialessonslearnedfromanovinesepticshockmodelincorporatingintensivecaresupport
AT dienerkerrilynr highmobilitygroupboxprotein1neutralizationtherapyinovinebacteremialessonslearnedfromanovinesepticshockmodelincorporatingintensivecaresupport
AT hayballjohnd highmobilitygroupboxprotein1neutralizationtherapyinovinebacteremialessonslearnedfromanovinesepticshockmodelincorporatingintensivecaresupport