Cargando…

A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing

Delivery technologies for the CRISPR-Cas9 gene editing system often require viral vectors, which pose safety concerns for therapeutic genome editing(1). Alternatively, cationic liposomal components or polymers can be used to encapsulate multiple CRISPR components into large particles (typically >...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Guojun, Abdeen, Amr A., Wang, Yuyuan, Shahi, Pawan K., Robertson, Samantha, Xie, Ruosen, Suzuki, Masatoshi, Pattnaik, Bikash R., Saha, Krishanu, Gong, Shaoqin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778035/
https://www.ncbi.nlm.nih.gov/pubmed/31501532
http://dx.doi.org/10.1038/s41565-019-0539-2
_version_ 1783456695323721728
author Chen, Guojun
Abdeen, Amr A.
Wang, Yuyuan
Shahi, Pawan K.
Robertson, Samantha
Xie, Ruosen
Suzuki, Masatoshi
Pattnaik, Bikash R.
Saha, Krishanu
Gong, Shaoqin
author_facet Chen, Guojun
Abdeen, Amr A.
Wang, Yuyuan
Shahi, Pawan K.
Robertson, Samantha
Xie, Ruosen
Suzuki, Masatoshi
Pattnaik, Bikash R.
Saha, Krishanu
Gong, Shaoqin
author_sort Chen, Guojun
collection PubMed
description Delivery technologies for the CRISPR-Cas9 gene editing system often require viral vectors, which pose safety concerns for therapeutic genome editing(1). Alternatively, cationic liposomal components or polymers can be used to encapsulate multiple CRISPR components into large particles (typically >100 nm diameter); however, such systems are limited by variability in loading of the cargo. Here, we report the design of customizable synthetic nanoparticles for the delivery of Cas9 nuclease and a single-guide RNA (sgRNA), enabling controlled stoichiometry of CRISPR components and limiting possible safety concerns in vivo. We describe the synthesis of a thin glutathione (GSH)-cleavable covalently-crosslinked polymer coating, called a nanocapsule (NC), around a pre-assembled ribonucleoprotein (RNP) complex between a Cas9 nuclease and a sgRNA. The NC is synthesized by acrylate-based polymerization, has a hydrodynamic diameter of 25 nm, and can be customized via facile surface modification. NCs efficiently generate targeted gene edits in vitro without any apparent cytotoxicity. Furthermore, NCs produce robust gene editing in vivo in murine retinal pigment epithelium (RPE) tissue and skeletal muscle following local administration. This customizable NC nanoplatform efficiently delivers CRISPR RNP complexes for in vitro and in vivo somatic gene editing.
format Online
Article
Text
id pubmed-6778035
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-67780352020-03-09 A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing Chen, Guojun Abdeen, Amr A. Wang, Yuyuan Shahi, Pawan K. Robertson, Samantha Xie, Ruosen Suzuki, Masatoshi Pattnaik, Bikash R. Saha, Krishanu Gong, Shaoqin Nat Nanotechnol Article Delivery technologies for the CRISPR-Cas9 gene editing system often require viral vectors, which pose safety concerns for therapeutic genome editing(1). Alternatively, cationic liposomal components or polymers can be used to encapsulate multiple CRISPR components into large particles (typically >100 nm diameter); however, such systems are limited by variability in loading of the cargo. Here, we report the design of customizable synthetic nanoparticles for the delivery of Cas9 nuclease and a single-guide RNA (sgRNA), enabling controlled stoichiometry of CRISPR components and limiting possible safety concerns in vivo. We describe the synthesis of a thin glutathione (GSH)-cleavable covalently-crosslinked polymer coating, called a nanocapsule (NC), around a pre-assembled ribonucleoprotein (RNP) complex between a Cas9 nuclease and a sgRNA. The NC is synthesized by acrylate-based polymerization, has a hydrodynamic diameter of 25 nm, and can be customized via facile surface modification. NCs efficiently generate targeted gene edits in vitro without any apparent cytotoxicity. Furthermore, NCs produce robust gene editing in vivo in murine retinal pigment epithelium (RPE) tissue and skeletal muscle following local administration. This customizable NC nanoplatform efficiently delivers CRISPR RNP complexes for in vitro and in vivo somatic gene editing. 2019-09-09 2019-10 /pmc/articles/PMC6778035/ /pubmed/31501532 http://dx.doi.org/10.1038/s41565-019-0539-2 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Chen, Guojun
Abdeen, Amr A.
Wang, Yuyuan
Shahi, Pawan K.
Robertson, Samantha
Xie, Ruosen
Suzuki, Masatoshi
Pattnaik, Bikash R.
Saha, Krishanu
Gong, Shaoqin
A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing
title A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing
title_full A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing
title_fullStr A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing
title_full_unstemmed A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing
title_short A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing
title_sort biodegradable nanocapsule delivers a cas9 ribonucleoprotein complex for in vivo genome editing
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778035/
https://www.ncbi.nlm.nih.gov/pubmed/31501532
http://dx.doi.org/10.1038/s41565-019-0539-2
work_keys_str_mv AT chenguojun abiodegradablenanocapsuledeliversacas9ribonucleoproteincomplexforinvivogenomeediting
AT abdeenamra abiodegradablenanocapsuledeliversacas9ribonucleoproteincomplexforinvivogenomeediting
AT wangyuyuan abiodegradablenanocapsuledeliversacas9ribonucleoproteincomplexforinvivogenomeediting
AT shahipawank abiodegradablenanocapsuledeliversacas9ribonucleoproteincomplexforinvivogenomeediting
AT robertsonsamantha abiodegradablenanocapsuledeliversacas9ribonucleoproteincomplexforinvivogenomeediting
AT xieruosen abiodegradablenanocapsuledeliversacas9ribonucleoproteincomplexforinvivogenomeediting
AT suzukimasatoshi abiodegradablenanocapsuledeliversacas9ribonucleoproteincomplexforinvivogenomeediting
AT pattnaikbikashr abiodegradablenanocapsuledeliversacas9ribonucleoproteincomplexforinvivogenomeediting
AT sahakrishanu abiodegradablenanocapsuledeliversacas9ribonucleoproteincomplexforinvivogenomeediting
AT gongshaoqin abiodegradablenanocapsuledeliversacas9ribonucleoproteincomplexforinvivogenomeediting
AT chenguojun biodegradablenanocapsuledeliversacas9ribonucleoproteincomplexforinvivogenomeediting
AT abdeenamra biodegradablenanocapsuledeliversacas9ribonucleoproteincomplexforinvivogenomeediting
AT wangyuyuan biodegradablenanocapsuledeliversacas9ribonucleoproteincomplexforinvivogenomeediting
AT shahipawank biodegradablenanocapsuledeliversacas9ribonucleoproteincomplexforinvivogenomeediting
AT robertsonsamantha biodegradablenanocapsuledeliversacas9ribonucleoproteincomplexforinvivogenomeediting
AT xieruosen biodegradablenanocapsuledeliversacas9ribonucleoproteincomplexforinvivogenomeediting
AT suzukimasatoshi biodegradablenanocapsuledeliversacas9ribonucleoproteincomplexforinvivogenomeediting
AT pattnaikbikashr biodegradablenanocapsuledeliversacas9ribonucleoproteincomplexforinvivogenomeediting
AT sahakrishanu biodegradablenanocapsuledeliversacas9ribonucleoproteincomplexforinvivogenomeediting
AT gongshaoqin biodegradablenanocapsuledeliversacas9ribonucleoproteincomplexforinvivogenomeediting