Cargando…

H19 is not hypomethylated or upregulated with age or sex in the aortic valves of mice

Epigenetic dysregulation of long noncoding RNA H19 was recently found to be associated with calcific aortic valve disease (CAVD) in humans by repressing NOTCH1 transcription. This finding offers a possible epigenetic explanation for the abundance of cases of CAVD that are not explained by any clear...

Descripción completa

Detalles Bibliográficos
Autores principales: Vander Roest, Mark, Krapp, Christopher, Thorvaldsen, Joanne L., Bartolomei, Marisa S., Merryman, W. David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778597/
https://www.ncbi.nlm.nih.gov/pubmed/31609547
http://dx.doi.org/10.14814/phy2.14244
Descripción
Sumario:Epigenetic dysregulation of long noncoding RNA H19 was recently found to be associated with calcific aortic valve disease (CAVD) in humans by repressing NOTCH1 transcription. This finding offers a possible epigenetic explanation for the abundance of cases of CAVD that are not explained by any clear genetic mutation. In this study, we examined the effect of age and sex on epigenetic dysregulation of H19 and subsequent aortic stenosis. Cohorts of littermate, wild‐type C57BL/6 mice were studied at developmental ages analogous to human middle age through advanced age. Cardiac and aortic valve function were assessed with M‐mode echocardiography and pulsed wave Doppler ultrasound, respectively. Bisulfite sequencing was used to determine methylation‐based epigenetic regulation of H19, and RT‐PCR was used to determine changes in gene expression profiles. Male mice were found to have higher peak systolic velocities than females, with several of the oldest mice showing signs of early aortic stenosis. The imprinting control region of H19 was not hypomethylated with age, and H19 expression was lower in the aortic valves of older mice than in the youngest group. These results suggest that age‐related upregulation of H19 is not observed in murine aortic valves and that other factors may initiate H19‐related CAVD in humans.