Cargando…
Impact of De-Identification on Clinical Text Classification Using Traditional and Deep Learning Classifiers
Clinical text de-identification enables collaborative research while protecting patient privacy and confidentiality; however, concerns persist about the reduction in the utility of the de-identified text for information extraction and machine learning tasks. In the context of a deep learning experim...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779034/ https://www.ncbi.nlm.nih.gov/pubmed/31437930 http://dx.doi.org/10.3233/SHTI190228 |