Cargando…
Impact of De-Identification on Clinical Text Classification Using Traditional and Deep Learning Classifiers
Clinical text de-identification enables collaborative research while protecting patient privacy and confidentiality; however, concerns persist about the reduction in the utility of the de-identified text for information extraction and machine learning tasks. In the context of a deep learning experim...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779034/ https://www.ncbi.nlm.nih.gov/pubmed/31437930 http://dx.doi.org/10.3233/SHTI190228 |
Sumario: | Clinical text de-identification enables collaborative research while protecting patient privacy and confidentiality; however, concerns persist about the reduction in the utility of the de-identified text for information extraction and machine learning tasks. In the context of a deep learning experiment to detect altered mental status in emergency department provider notes, we tested several classifiers on clinical notes in their original form and on their automatically de-identified counterpart. We tested both traditional bag-of-words based machine learning models as well as word-embedding based deep learning models. We evaluated the models on 1,113 history of present illness notes. A total of 1,795 protected health information tokens were replaced in the de-identification process across all notes. The deep learning models had the best performance with accuracies of 95% on both original and de-identified notes. However, there was no significant difference in the performance of any of the models on the original vs. the de-identified notes. |
---|