Cargando…
Impact of De-Identification on Clinical Text Classification Using Traditional and Deep Learning Classifiers
Clinical text de-identification enables collaborative research while protecting patient privacy and confidentiality; however, concerns persist about the reduction in the utility of the de-identified text for information extraction and machine learning tasks. In the context of a deep learning experim...
Autores principales: | Obeid, Jihad S., Heider, Paul M., Weeda, Erin R., Matuskowitz, Andrew J., Carr, Christine M., Gagnon, Kevin, Crawford, Tami, Meystre, Stephane M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779034/ https://www.ncbi.nlm.nih.gov/pubmed/31437930 http://dx.doi.org/10.3233/SHTI190228 |
Ejemplares similares
-
Automated detection of altered mental status in emergency department clinical notes: a deep learning approach
por: Obeid, Jihad S., et al.
Publicado: (2019) -
Word2Vec inversion and traditional text classifiers for phenotyping lupus
por: Turner, Clayton A., et al.
Publicado: (2017) -
An artificial intelligence approach to COVID-19 infection risk assessment in virtual visits: A case report
por: Obeid, Jihad S, et al.
Publicado: (2020) -
Identifying and classifying biomedical perturbations in text
por: Rodriguez-Esteban, Raul, et al.
Publicado: (2009) -
Red Flag/Blue Flag visualization of a common CNN for text classification
por: Del Gaizo, John, et al.
Publicado: (2023)