Cargando…
A rapid, low pH, nutrient stress, assay to determine the bactericidal activity of compounds against non-replicating Mycobacterium tuberculosis
There is an urgent need for new anti-tubercular agents which can lead to a shortened treatment time by targeting persistent or non-replicating bacilli. In order to assess compound activity against non-replicating Mycobacterium tuberculosis, we developed a method to detect the bactericidal activity o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779252/ https://www.ncbi.nlm.nih.gov/pubmed/31589621 http://dx.doi.org/10.1371/journal.pone.0222970 |
Sumario: | There is an urgent need for new anti-tubercular agents which can lead to a shortened treatment time by targeting persistent or non-replicating bacilli. In order to assess compound activity against non-replicating Mycobacterium tuberculosis, we developed a method to detect the bactericidal activity of novel compounds within 7 days. Our method uses incubation at low pH in order to induce a non-replicating state. We used a strain of M. tuberculosis expressing luciferase; we first confirmed the linear relationship between luminescence and viable bacteria (determined by colony forming units) under our assay conditions. We optimized the assay parameters in 96-well plates in order to achieve a reproducible assay. Our final assay used M. tuberculosis in phosphate-citrate buffer, pH 4.5 exposed to compounds for 7 days; viable bacteria were determined by luminescence. We recorded the minimum bactericidal concentration at pH 4.5 (MBC(4.5)) representing >2 logs of kill. We confirmed the utility of the assay with control compounds. The ionophores monensin, niclosamide, and carbonyl cyanide 3-chlorophenylhydrazone and the anti-tubercular drugs pretomanid and rifampicin were active, while several other drugs such as isoniazid, ethambutol, and linezolid were not. |
---|