Cargando…
Discovery of Bioactive Indole-Diketopiperazines from the Marine-Derived Fungus Penicillium brasilianum Aided by Genomic Information
Identification and analysis of the whole genome of the marine-derived fungus Penicillium brasilianum HBU-136 revealed the presence of an interesting biosynthetic gene cluster (BGC) for non-ribosomal peptide synthetases (NRPS), highly homologous to the BGCs of indole-diketopiperazine derivatives. Wit...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781160/ https://www.ncbi.nlm.nih.gov/pubmed/31480589 http://dx.doi.org/10.3390/md17090514 |
Sumario: | Identification and analysis of the whole genome of the marine-derived fungus Penicillium brasilianum HBU-136 revealed the presence of an interesting biosynthetic gene cluster (BGC) for non-ribosomal peptide synthetases (NRPS), highly homologous to the BGCs of indole-diketopiperazine derivatives. With the aid of genomic analysis, eight indole-diketopiperazines (1−8), including three new compounds, spirotryprostatin G (1), and cyclotryprostatins F and G (2 and 3), were obtained by large-scale cultivation of the fungal strain HBU-136 using rice medium with 1.0% MgCl(2). The absolute configurations of 1−3 were determined by comparison of their experimental electronic circular dichroism (ECD) with calculated ECD spectra. Selective cytotoxicities were observed for compounds 1 and 4 against HL-60 cell line with the IC(50) values of 6.0 and 7.9 μM, respectively, whereas 2, 3, and 5 against MCF-7 cell line with the IC(50) values of 7.6, 10.8, and 5.1 μM, respectively. |
---|