Cargando…
Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks
Despite the state-of-the-art performance for medical image segmentation, deep convolutional neural networks (CNNs) have rarely provided uncertainty estimations regarding their segmentation outputs, e.g., model (epistemic) and image-based (aleatoric) uncertainties. In this work, we analyze these diff...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6783308/ https://www.ncbi.nlm.nih.gov/pubmed/31595105 http://dx.doi.org/10.1016/j.neucom.2019.01.103 |