Cargando…
Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks
Despite the state-of-the-art performance for medical image segmentation, deep convolutional neural networks (CNNs) have rarely provided uncertainty estimations regarding their segmentation outputs, e.g., model (epistemic) and image-based (aleatoric) uncertainties. In this work, we analyze these diff...
Autores principales: | Wang, Guotai, Li, Wenqi, Aertsen, Michael, Deprest, Jan, Ourselin, Sébastien, Vercauteren, Tom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6783308/ https://www.ncbi.nlm.nih.gov/pubmed/31595105 http://dx.doi.org/10.1016/j.neucom.2019.01.103 |
Ejemplares similares
-
Automatic Brain Tumor Segmentation Based on Cascaded Convolutional Neural Networks With Uncertainty Estimation
por: Wang, Guotai, et al.
Publicado: (2019) -
Slic-Seg: A minimally interactive segmentation of the placenta from sparse and motion-corrupted fetal MRI in multiple views
por: Wang, Guotai, et al.
Publicado: (2016) -
Ensembles Are Required to Handle Aleatoric and Parametric
Uncertainty in Molecular Dynamics Simulation
por: Vassaux, Maxime, et al.
Publicado: (2021) -
An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI
por: Ebner, Michael, et al.
Publicado: (2020) -
Weakly-supervised convolutional neural networks for multimodal image registration
por: Hu, Yipeng, et al.
Publicado: (2018)