Cargando…
The Application of Ribosome Engineering to Natural Product Discovery and Yield Improvement in Streptomyces
Microbial natural product drug discovery and development has entered a new era, driven by microbial genomics and synthetic biology. Genome sequencing has revealed the vast potential to produce valuable secondary metabolites in bacteria and fungi. However, many of the biosynthetic gene clusters are s...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784132/ https://www.ncbi.nlm.nih.gov/pubmed/31480298 http://dx.doi.org/10.3390/antibiotics8030133 |
Sumario: | Microbial natural product drug discovery and development has entered a new era, driven by microbial genomics and synthetic biology. Genome sequencing has revealed the vast potential to produce valuable secondary metabolites in bacteria and fungi. However, many of the biosynthetic gene clusters are silent under standard fermentation conditions. By rational screening for mutations in bacterial ribosomal proteins or RNA polymerases, ribosome engineering is a versatile approach to obtain mutants with improved titers for microbial product formation or new natural products through activating silent biosynthetic gene clusters. In this review, we discuss the mechanism of ribosome engineering and its application to natural product discovery and yield improvement in Streptomyces. Our analysis suggests that ribosome engineering is a rapid and cost-effective approach and could be adapted to speed up the discovery and development of natural product drug leads in the post-genomic era. |
---|