Cargando…

Bexarotene therapy ameliorates behavioral deficits and induces functional and molecular changes in very-old Triple Transgenic Mice model of Alzheimer´s disease

INTRODUCTION: Bexarotene, a retinoid X receptor agonist, improves cognition in murine models of Alzheimer’s disease (AD). This study evaluated the effects of bexarotene on pathological and electrophysiological changes in very old triple transgenic AD mice (3xTg-AD mice). METHODS: 24-month-old 3xTg-A...

Descripción completa

Detalles Bibliográficos
Autores principales: Muñoz-Cabrera, Jonathan Mauricio, Sandoval-Hernández, Adrián Gabriel, Niño, Andrea, Báez, Tatiana, Bustos-Rangel, Angie, Cardona-Gómez, Gloria Patricia, Múnera, Alejandro, Arboleda, Gonzalo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6785083/
https://www.ncbi.nlm.nih.gov/pubmed/31596896
http://dx.doi.org/10.1371/journal.pone.0223578
Descripción
Sumario:INTRODUCTION: Bexarotene, a retinoid X receptor agonist, improves cognition in murine models of Alzheimer’s disease (AD). This study evaluated the effects of bexarotene on pathological and electrophysiological changes in very old triple transgenic AD mice (3xTg-AD mice). METHODS: 24-month-old 3xTg-AD mice were treated with bexarotene (100 mg/kg/day for 30 days). The Morris water maze was used to evaluate spatial memory; immunofluorescence and confocal microscopy were used to evaluate pathological changes; and in vivo electrophysiological recordings were used to evaluate basal transmission and plasticity in the commissural CA3-CA1 pathway. RESULTS: In addition to cognitive improvement, bexarotene-treated 3xTg-AD mice were found to have 1) reductions of astrogliosis and reactive microglia both in cortex and hippocampus; 2) increased ApoE expression restricted to CA1; 3) increased number of cells co-labeled with ApoE and NeuN; 4) recovery of NeuN expression, suggesting neuronal protection; and, 5) recovery of basal synaptic transmission and synaptic plasticity. DISCUSSION: These results indicate that bexarotene-induced improvement in cognition is due to multiple changes that contribute to recovery of synaptic plasticity.