Cargando…
Random forest-based imputation outperforms other methods for imputing LC-MS metabolomics data: a comparative study
BACKGROUND: LC-MS technology makes it possible to measure the relative abundance of numerous molecular features of a sample in single analysis. However, especially non-targeted metabolite profiling approaches generate vast arrays of data that are prone to aberrations such as missing values. No matte...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6788053/ https://www.ncbi.nlm.nih.gov/pubmed/31601178 http://dx.doi.org/10.1186/s12859-019-3110-0 |