Cargando…
Random forest-based imputation outperforms other methods for imputing LC-MS metabolomics data: a comparative study
BACKGROUND: LC-MS technology makes it possible to measure the relative abundance of numerous molecular features of a sample in single analysis. However, especially non-targeted metabolite profiling approaches generate vast arrays of data that are prone to aberrations such as missing values. No matte...
Autores principales: | Kokla, Marietta, Virtanen, Jyrki, Kolehmainen, Marjukka, Paananen, Jussi, Hanhineva, Kati |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6788053/ https://www.ncbi.nlm.nih.gov/pubmed/31601178 http://dx.doi.org/10.1186/s12859-019-3110-0 |
Ejemplares similares
-
“Notame”: Workflow for Non-Targeted LC–MS Metabolic Profiling
por: Klåvus, Anton, et al.
Publicado: (2020) -
Normalization and missing value imputation for label-free LC-MS analysis
por: Karpievitch, Yuliya V, et al.
Publicado: (2012) -
Comparison of multiple imputation and other methods for the analysis of imputed genotypes
por: Auer, Paul L., et al.
Publicado: (2023) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
por: Zhao, Zhenming, et al.
Publicado: (2008) -
Molgenis-impute: imputation pipeline in a box
por: Kanterakis, Alexandros, et al.
Publicado: (2015)