Cargando…
The structure of the colorectal cancer-associated enzyme GalNAc-T12 reveals how nonconserved residues dictate its function
Polypeptide N-acetylgalactosaminyl transferases (GalNAc-Ts) initiate mucin type O-glycosylation by catalyzing the transfer of N-acetylgalactosamine (GalNAc) to Ser or Thr on a protein substrate. Inactive and partially active variants of the isoenzyme GalNAc-T12 are present in subsets of patients wit...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6789641/ https://www.ncbi.nlm.nih.gov/pubmed/31548401 http://dx.doi.org/10.1073/pnas.1902211116 |
_version_ | 1783458667113218048 |
---|---|
author | Fernandez, Amy J. Daniel, Earnest James Paul Mahajan, Sai Pooja Gray, Jeffrey J. Gerken, Thomas A. Tabak, Lawrence A. Samara, Nadine L. |
author_facet | Fernandez, Amy J. Daniel, Earnest James Paul Mahajan, Sai Pooja Gray, Jeffrey J. Gerken, Thomas A. Tabak, Lawrence A. Samara, Nadine L. |
author_sort | Fernandez, Amy J. |
collection | PubMed |
description | Polypeptide N-acetylgalactosaminyl transferases (GalNAc-Ts) initiate mucin type O-glycosylation by catalyzing the transfer of N-acetylgalactosamine (GalNAc) to Ser or Thr on a protein substrate. Inactive and partially active variants of the isoenzyme GalNAc-T12 are present in subsets of patients with colorectal cancer, and several of these variants alter nonconserved residues with unknown functions. While previous biochemical studies have demonstrated that GalNAc-T12 selects for peptide and glycopeptide substrates through unique interactions with its catalytic and lectin domains, the molecular basis for this distinct substrate selectivity remains elusive. Here we examine the molecular basis of the activity and substrate selectivity of GalNAc-T12. The X-ray crystal structure of GalNAc-T12 in complex with a di-glycosylated peptide substrate reveals how a nonconserved GalNAc binding pocket in the GalNAc-T12 catalytic domain dictates its unique substrate selectivity. In addition, the structure provides insight into how colorectal cancer mutations disrupt the activity of GalNAc-T12 and illustrates how the rules dictating GalNAc-T12 function are distinct from those for other GalNAc-Ts. |
format | Online Article Text |
id | pubmed-6789641 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-67896412019-10-18 The structure of the colorectal cancer-associated enzyme GalNAc-T12 reveals how nonconserved residues dictate its function Fernandez, Amy J. Daniel, Earnest James Paul Mahajan, Sai Pooja Gray, Jeffrey J. Gerken, Thomas A. Tabak, Lawrence A. Samara, Nadine L. Proc Natl Acad Sci U S A Biological Sciences Polypeptide N-acetylgalactosaminyl transferases (GalNAc-Ts) initiate mucin type O-glycosylation by catalyzing the transfer of N-acetylgalactosamine (GalNAc) to Ser or Thr on a protein substrate. Inactive and partially active variants of the isoenzyme GalNAc-T12 are present in subsets of patients with colorectal cancer, and several of these variants alter nonconserved residues with unknown functions. While previous biochemical studies have demonstrated that GalNAc-T12 selects for peptide and glycopeptide substrates through unique interactions with its catalytic and lectin domains, the molecular basis for this distinct substrate selectivity remains elusive. Here we examine the molecular basis of the activity and substrate selectivity of GalNAc-T12. The X-ray crystal structure of GalNAc-T12 in complex with a di-glycosylated peptide substrate reveals how a nonconserved GalNAc binding pocket in the GalNAc-T12 catalytic domain dictates its unique substrate selectivity. In addition, the structure provides insight into how colorectal cancer mutations disrupt the activity of GalNAc-T12 and illustrates how the rules dictating GalNAc-T12 function are distinct from those for other GalNAc-Ts. National Academy of Sciences 2019-10-08 2019-09-23 /pmc/articles/PMC6789641/ /pubmed/31548401 http://dx.doi.org/10.1073/pnas.1902211116 Text en Copyright © 2019 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Fernandez, Amy J. Daniel, Earnest James Paul Mahajan, Sai Pooja Gray, Jeffrey J. Gerken, Thomas A. Tabak, Lawrence A. Samara, Nadine L. The structure of the colorectal cancer-associated enzyme GalNAc-T12 reveals how nonconserved residues dictate its function |
title | The structure of the colorectal cancer-associated enzyme GalNAc-T12 reveals how nonconserved residues dictate its function |
title_full | The structure of the colorectal cancer-associated enzyme GalNAc-T12 reveals how nonconserved residues dictate its function |
title_fullStr | The structure of the colorectal cancer-associated enzyme GalNAc-T12 reveals how nonconserved residues dictate its function |
title_full_unstemmed | The structure of the colorectal cancer-associated enzyme GalNAc-T12 reveals how nonconserved residues dictate its function |
title_short | The structure of the colorectal cancer-associated enzyme GalNAc-T12 reveals how nonconserved residues dictate its function |
title_sort | structure of the colorectal cancer-associated enzyme galnac-t12 reveals how nonconserved residues dictate its function |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6789641/ https://www.ncbi.nlm.nih.gov/pubmed/31548401 http://dx.doi.org/10.1073/pnas.1902211116 |
work_keys_str_mv | AT fernandezamyj thestructureofthecolorectalcancerassociatedenzymegalnact12revealshownonconservedresiduesdictateitsfunction AT danielearnestjamespaul thestructureofthecolorectalcancerassociatedenzymegalnact12revealshownonconservedresiduesdictateitsfunction AT mahajansaipooja thestructureofthecolorectalcancerassociatedenzymegalnact12revealshownonconservedresiduesdictateitsfunction AT grayjeffreyj thestructureofthecolorectalcancerassociatedenzymegalnact12revealshownonconservedresiduesdictateitsfunction AT gerkenthomasa thestructureofthecolorectalcancerassociatedenzymegalnact12revealshownonconservedresiduesdictateitsfunction AT tabaklawrencea thestructureofthecolorectalcancerassociatedenzymegalnact12revealshownonconservedresiduesdictateitsfunction AT samaranadinel thestructureofthecolorectalcancerassociatedenzymegalnact12revealshownonconservedresiduesdictateitsfunction AT fernandezamyj structureofthecolorectalcancerassociatedenzymegalnact12revealshownonconservedresiduesdictateitsfunction AT danielearnestjamespaul structureofthecolorectalcancerassociatedenzymegalnact12revealshownonconservedresiduesdictateitsfunction AT mahajansaipooja structureofthecolorectalcancerassociatedenzymegalnact12revealshownonconservedresiduesdictateitsfunction AT grayjeffreyj structureofthecolorectalcancerassociatedenzymegalnact12revealshownonconservedresiduesdictateitsfunction AT gerkenthomasa structureofthecolorectalcancerassociatedenzymegalnact12revealshownonconservedresiduesdictateitsfunction AT tabaklawrencea structureofthecolorectalcancerassociatedenzymegalnact12revealshownonconservedresiduesdictateitsfunction AT samaranadinel structureofthecolorectalcancerassociatedenzymegalnact12revealshownonconservedresiduesdictateitsfunction |