Cargando…

MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions

scRNA-seq profiles each represent a highly partial sample of mRNA molecules from a unique cell that can never be resampled, and robust analysis must separate the sampling effect from biological variance. We describe a methodology for partitioning scRNA-seq datasets into metacells: disjoint and homog...

Descripción completa

Detalles Bibliográficos
Autores principales: Baran, Yael, Bercovich, Akhiad, Sebe-Pedros, Arnau, Lubling, Yaniv, Giladi, Amir, Chomsky, Elad, Meir, Zohar, Hoichman, Michael, Lifshitz, Aviezer, Tanay, Amos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6790056/
https://www.ncbi.nlm.nih.gov/pubmed/31604482
http://dx.doi.org/10.1186/s13059-019-1812-2
_version_ 1783458739673628672
author Baran, Yael
Bercovich, Akhiad
Sebe-Pedros, Arnau
Lubling, Yaniv
Giladi, Amir
Chomsky, Elad
Meir, Zohar
Hoichman, Michael
Lifshitz, Aviezer
Tanay, Amos
author_facet Baran, Yael
Bercovich, Akhiad
Sebe-Pedros, Arnau
Lubling, Yaniv
Giladi, Amir
Chomsky, Elad
Meir, Zohar
Hoichman, Michael
Lifshitz, Aviezer
Tanay, Amos
author_sort Baran, Yael
collection PubMed
description scRNA-seq profiles each represent a highly partial sample of mRNA molecules from a unique cell that can never be resampled, and robust analysis must separate the sampling effect from biological variance. We describe a methodology for partitioning scRNA-seq datasets into metacells: disjoint and homogenous groups of profiles that could have been resampled from the same cell. Unlike clustering analysis, our algorithm specializes at obtaining granular as opposed to maximal groups. We show how to use metacells as building blocks for complex quantitative transcriptional maps while avoiding data smoothing. Our algorithms are implemented in the MetaCell R/C++ software package.
format Online
Article
Text
id pubmed-6790056
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-67900562019-10-18 MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions Baran, Yael Bercovich, Akhiad Sebe-Pedros, Arnau Lubling, Yaniv Giladi, Amir Chomsky, Elad Meir, Zohar Hoichman, Michael Lifshitz, Aviezer Tanay, Amos Genome Biol Method scRNA-seq profiles each represent a highly partial sample of mRNA molecules from a unique cell that can never be resampled, and robust analysis must separate the sampling effect from biological variance. We describe a methodology for partitioning scRNA-seq datasets into metacells: disjoint and homogenous groups of profiles that could have been resampled from the same cell. Unlike clustering analysis, our algorithm specializes at obtaining granular as opposed to maximal groups. We show how to use metacells as building blocks for complex quantitative transcriptional maps while avoiding data smoothing. Our algorithms are implemented in the MetaCell R/C++ software package. BioMed Central 2019-10-11 /pmc/articles/PMC6790056/ /pubmed/31604482 http://dx.doi.org/10.1186/s13059-019-1812-2 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Method
Baran, Yael
Bercovich, Akhiad
Sebe-Pedros, Arnau
Lubling, Yaniv
Giladi, Amir
Chomsky, Elad
Meir, Zohar
Hoichman, Michael
Lifshitz, Aviezer
Tanay, Amos
MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions
title MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions
title_full MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions
title_fullStr MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions
title_full_unstemmed MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions
title_short MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions
title_sort metacell: analysis of single-cell rna-seq data using k-nn graph partitions
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6790056/
https://www.ncbi.nlm.nih.gov/pubmed/31604482
http://dx.doi.org/10.1186/s13059-019-1812-2
work_keys_str_mv AT baranyael metacellanalysisofsinglecellrnaseqdatausingknngraphpartitions
AT bercovichakhiad metacellanalysisofsinglecellrnaseqdatausingknngraphpartitions
AT sebepedrosarnau metacellanalysisofsinglecellrnaseqdatausingknngraphpartitions
AT lublingyaniv metacellanalysisofsinglecellrnaseqdatausingknngraphpartitions
AT giladiamir metacellanalysisofsinglecellrnaseqdatausingknngraphpartitions
AT chomskyelad metacellanalysisofsinglecellrnaseqdatausingknngraphpartitions
AT meirzohar metacellanalysisofsinglecellrnaseqdatausingknngraphpartitions
AT hoichmanmichael metacellanalysisofsinglecellrnaseqdatausingknngraphpartitions
AT lifshitzaviezer metacellanalysisofsinglecellrnaseqdatausingknngraphpartitions
AT tanayamos metacellanalysisofsinglecellrnaseqdatausingknngraphpartitions