Cargando…
MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions
scRNA-seq profiles each represent a highly partial sample of mRNA molecules from a unique cell that can never be resampled, and robust analysis must separate the sampling effect from biological variance. We describe a methodology for partitioning scRNA-seq datasets into metacells: disjoint and homog...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6790056/ https://www.ncbi.nlm.nih.gov/pubmed/31604482 http://dx.doi.org/10.1186/s13059-019-1812-2 |
_version_ | 1783458739673628672 |
---|---|
author | Baran, Yael Bercovich, Akhiad Sebe-Pedros, Arnau Lubling, Yaniv Giladi, Amir Chomsky, Elad Meir, Zohar Hoichman, Michael Lifshitz, Aviezer Tanay, Amos |
author_facet | Baran, Yael Bercovich, Akhiad Sebe-Pedros, Arnau Lubling, Yaniv Giladi, Amir Chomsky, Elad Meir, Zohar Hoichman, Michael Lifshitz, Aviezer Tanay, Amos |
author_sort | Baran, Yael |
collection | PubMed |
description | scRNA-seq profiles each represent a highly partial sample of mRNA molecules from a unique cell that can never be resampled, and robust analysis must separate the sampling effect from biological variance. We describe a methodology for partitioning scRNA-seq datasets into metacells: disjoint and homogenous groups of profiles that could have been resampled from the same cell. Unlike clustering analysis, our algorithm specializes at obtaining granular as opposed to maximal groups. We show how to use metacells as building blocks for complex quantitative transcriptional maps while avoiding data smoothing. Our algorithms are implemented in the MetaCell R/C++ software package. |
format | Online Article Text |
id | pubmed-6790056 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-67900562019-10-18 MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions Baran, Yael Bercovich, Akhiad Sebe-Pedros, Arnau Lubling, Yaniv Giladi, Amir Chomsky, Elad Meir, Zohar Hoichman, Michael Lifshitz, Aviezer Tanay, Amos Genome Biol Method scRNA-seq profiles each represent a highly partial sample of mRNA molecules from a unique cell that can never be resampled, and robust analysis must separate the sampling effect from biological variance. We describe a methodology for partitioning scRNA-seq datasets into metacells: disjoint and homogenous groups of profiles that could have been resampled from the same cell. Unlike clustering analysis, our algorithm specializes at obtaining granular as opposed to maximal groups. We show how to use metacells as building blocks for complex quantitative transcriptional maps while avoiding data smoothing. Our algorithms are implemented in the MetaCell R/C++ software package. BioMed Central 2019-10-11 /pmc/articles/PMC6790056/ /pubmed/31604482 http://dx.doi.org/10.1186/s13059-019-1812-2 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Method Baran, Yael Bercovich, Akhiad Sebe-Pedros, Arnau Lubling, Yaniv Giladi, Amir Chomsky, Elad Meir, Zohar Hoichman, Michael Lifshitz, Aviezer Tanay, Amos MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions |
title | MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions |
title_full | MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions |
title_fullStr | MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions |
title_full_unstemmed | MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions |
title_short | MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions |
title_sort | metacell: analysis of single-cell rna-seq data using k-nn graph partitions |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6790056/ https://www.ncbi.nlm.nih.gov/pubmed/31604482 http://dx.doi.org/10.1186/s13059-019-1812-2 |
work_keys_str_mv | AT baranyael metacellanalysisofsinglecellrnaseqdatausingknngraphpartitions AT bercovichakhiad metacellanalysisofsinglecellrnaseqdatausingknngraphpartitions AT sebepedrosarnau metacellanalysisofsinglecellrnaseqdatausingknngraphpartitions AT lublingyaniv metacellanalysisofsinglecellrnaseqdatausingknngraphpartitions AT giladiamir metacellanalysisofsinglecellrnaseqdatausingknngraphpartitions AT chomskyelad metacellanalysisofsinglecellrnaseqdatausingknngraphpartitions AT meirzohar metacellanalysisofsinglecellrnaseqdatausingknngraphpartitions AT hoichmanmichael metacellanalysisofsinglecellrnaseqdatausingknngraphpartitions AT lifshitzaviezer metacellanalysisofsinglecellrnaseqdatausingknngraphpartitions AT tanayamos metacellanalysisofsinglecellrnaseqdatausingknngraphpartitions |