Cargando…

Celecoxib enhances the sensitivity of non-small-cell lung cancer cells to radiation-induced apoptosis through downregulation of the Akt/mTOR signaling pathway and COX-2 expression

The current study aimed to identify the radiosensitizing effect of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, in combination with radiotherapy in non-small-cell lung cancer (NSCLC) cells. The combination of celecoxib potentiated radiation-induced apoptosis; however, no changes in cel...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Pan, He, Dan, Song, Erqun, Jiang, Mingdong, Song, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6793859/
https://www.ncbi.nlm.nih.gov/pubmed/31613929
http://dx.doi.org/10.1371/journal.pone.0223760
Descripción
Sumario:The current study aimed to identify the radiosensitizing effect of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, in combination with radiotherapy in non-small-cell lung cancer (NSCLC) cells. The combination of celecoxib potentiated radiation-induced apoptosis; however, no changes in cell cycle distribution and number of phosphorylated histone H2AX foci were detected, indicating a DNA damage-independent mechanism. In an in vivo mouse model, the tumor size was significantly decreased in the group combining celecoxib with radiation compared with the radiation only group. Phosphorylation of protein kinase B (Akt) and mammalian target of rapamycin (mTOR), as well as expression of COX-2 were significantly downregulated in cells treated with the combination of celecoxib and radiation compared with the radiation only group. The result indicated that celecoxib exhibits radiosensitizing effects through COX-2 and Akt/mTOR-dependent mechanisms. Induction the Akt/mTOR signaling pathway promotes radioresistance in various cancers, including NSCLC. Therefore, the current study suggested the therapeutic potential of combination therapy of celecoxib and radiation in the prevention of radioresistance.