Cargando…
Electric Field Controlled Indirect-Direct-Indirect Band Gap Transition in Monolayer InSe
Electronic structures of monolayer InSe with a perpendicular electric field are investigated. Indirect-direct-indirect band gap transition is found in monolayer InSe as the electric field strength is increased continuously. Meanwhile, the global band gap is suppressed gradually to zero, indicating t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6794337/ https://www.ncbi.nlm.nih.gov/pubmed/31617005 http://dx.doi.org/10.1186/s11671-019-3162-0 |
Sumario: | Electronic structures of monolayer InSe with a perpendicular electric field are investigated. Indirect-direct-indirect band gap transition is found in monolayer InSe as the electric field strength is increased continuously. Meanwhile, the global band gap is suppressed gradually to zero, indicating that semiconductor-metal transformation happens. The underlying mechanisms are revealed by analyzing both the orbital contributions to energy band and evolution of band edges. These findings may not only facilitate our further understanding of electronic characteristics of layered group III-VI semiconductors, but also provide useful guidance for designing optoelectronic devices. |
---|