Cargando…

Realizing Room‐Temperature Resonant Tunnel Magnetoresistance in Cr/Fe/MgAl(2)O(4) Quasi‐Quantum Well Structures

The quantum well (QW) realizes new functionalities due to the discrete electronic energy levels formed in the well‐shaped potential. Magnetic tunnel junctions (MTJs) combined with a quasi‐QW structure of Cr/ultrathin‐Fe/MgAl(2)O(4)(001)/Fe, in which the Cr quasi‐barrier layer confines Δ (1) up‐spin...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiang, Qingyi, Sukegawa, Hiroaki, Belmoubarik, Mohamed, Al‐Mahdawi, Muftah, Scheike, Thomas, Kasai, Shinya, Miura, Yoshio, Mitani, Seiji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6794625/
https://www.ncbi.nlm.nih.gov/pubmed/31637172
http://dx.doi.org/10.1002/advs.201901438
_version_ 1783459334465781760
author Xiang, Qingyi
Sukegawa, Hiroaki
Belmoubarik, Mohamed
Al‐Mahdawi, Muftah
Scheike, Thomas
Kasai, Shinya
Miura, Yoshio
Mitani, Seiji
author_facet Xiang, Qingyi
Sukegawa, Hiroaki
Belmoubarik, Mohamed
Al‐Mahdawi, Muftah
Scheike, Thomas
Kasai, Shinya
Miura, Yoshio
Mitani, Seiji
author_sort Xiang, Qingyi
collection PubMed
description The quantum well (QW) realizes new functionalities due to the discrete electronic energy levels formed in the well‐shaped potential. Magnetic tunnel junctions (MTJs) combined with a quasi‐QW structure of Cr/ultrathin‐Fe/MgAl(2)O(4)(001)/Fe, in which the Cr quasi‐barrier layer confines Δ (1) up‐spin electrons to the Fe well, are prepared with perfectly lattice‐matched interfaces and atomic layer number control. Resonant peaks are clearly observed in the differential conductance of the MTJs due to the formation of QWs. Furthermore, enhanced tunnel magnetoresistance (TMR) peaks at the resonant bias voltages are realized for the MTJs at room temperature, i.e., it is observed that TMR ratios at specific and even high bias‐voltages (V (bias)) are larger than zero‐bias TMR ratios for the MTJs with odd Fe atomic layers, in contrast to the earlier experimental studies. In addition, a new finding in this study is unique sign changes in the temperature coefficient of resistance (TCR) depending on the Fe thickness and V (bias), which is interpreted as a signature of the QW formation of Δ(1) symmetry electronic states. The present study suggests that the spin‐dependent resonant tunneling via the QWs formed in Cr/ultrathin‐Fe/MgAl(2)O(4)/Fe structures should open a new pathway to achieve a large TMR at practically high V (bias).
format Online
Article
Text
id pubmed-6794625
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-67946252019-10-21 Realizing Room‐Temperature Resonant Tunnel Magnetoresistance in Cr/Fe/MgAl(2)O(4) Quasi‐Quantum Well Structures Xiang, Qingyi Sukegawa, Hiroaki Belmoubarik, Mohamed Al‐Mahdawi, Muftah Scheike, Thomas Kasai, Shinya Miura, Yoshio Mitani, Seiji Adv Sci (Weinh) Full Papers The quantum well (QW) realizes new functionalities due to the discrete electronic energy levels formed in the well‐shaped potential. Magnetic tunnel junctions (MTJs) combined with a quasi‐QW structure of Cr/ultrathin‐Fe/MgAl(2)O(4)(001)/Fe, in which the Cr quasi‐barrier layer confines Δ (1) up‐spin electrons to the Fe well, are prepared with perfectly lattice‐matched interfaces and atomic layer number control. Resonant peaks are clearly observed in the differential conductance of the MTJs due to the formation of QWs. Furthermore, enhanced tunnel magnetoresistance (TMR) peaks at the resonant bias voltages are realized for the MTJs at room temperature, i.e., it is observed that TMR ratios at specific and even high bias‐voltages (V (bias)) are larger than zero‐bias TMR ratios for the MTJs with odd Fe atomic layers, in contrast to the earlier experimental studies. In addition, a new finding in this study is unique sign changes in the temperature coefficient of resistance (TCR) depending on the Fe thickness and V (bias), which is interpreted as a signature of the QW formation of Δ(1) symmetry electronic states. The present study suggests that the spin‐dependent resonant tunneling via the QWs formed in Cr/ultrathin‐Fe/MgAl(2)O(4)/Fe structures should open a new pathway to achieve a large TMR at practically high V (bias). John Wiley and Sons Inc. 2019-08-10 /pmc/articles/PMC6794625/ /pubmed/31637172 http://dx.doi.org/10.1002/advs.201901438 Text en © 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Xiang, Qingyi
Sukegawa, Hiroaki
Belmoubarik, Mohamed
Al‐Mahdawi, Muftah
Scheike, Thomas
Kasai, Shinya
Miura, Yoshio
Mitani, Seiji
Realizing Room‐Temperature Resonant Tunnel Magnetoresistance in Cr/Fe/MgAl(2)O(4) Quasi‐Quantum Well Structures
title Realizing Room‐Temperature Resonant Tunnel Magnetoresistance in Cr/Fe/MgAl(2)O(4) Quasi‐Quantum Well Structures
title_full Realizing Room‐Temperature Resonant Tunnel Magnetoresistance in Cr/Fe/MgAl(2)O(4) Quasi‐Quantum Well Structures
title_fullStr Realizing Room‐Temperature Resonant Tunnel Magnetoresistance in Cr/Fe/MgAl(2)O(4) Quasi‐Quantum Well Structures
title_full_unstemmed Realizing Room‐Temperature Resonant Tunnel Magnetoresistance in Cr/Fe/MgAl(2)O(4) Quasi‐Quantum Well Structures
title_short Realizing Room‐Temperature Resonant Tunnel Magnetoresistance in Cr/Fe/MgAl(2)O(4) Quasi‐Quantum Well Structures
title_sort realizing room‐temperature resonant tunnel magnetoresistance in cr/fe/mgal(2)o(4) quasi‐quantum well structures
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6794625/
https://www.ncbi.nlm.nih.gov/pubmed/31637172
http://dx.doi.org/10.1002/advs.201901438
work_keys_str_mv AT xiangqingyi realizingroomtemperatureresonanttunnelmagnetoresistanceincrfemgal2o4quasiquantumwellstructures
AT sukegawahiroaki realizingroomtemperatureresonanttunnelmagnetoresistanceincrfemgal2o4quasiquantumwellstructures
AT belmoubarikmohamed realizingroomtemperatureresonanttunnelmagnetoresistanceincrfemgal2o4quasiquantumwellstructures
AT almahdawimuftah realizingroomtemperatureresonanttunnelmagnetoresistanceincrfemgal2o4quasiquantumwellstructures
AT scheikethomas realizingroomtemperatureresonanttunnelmagnetoresistanceincrfemgal2o4quasiquantumwellstructures
AT kasaishinya realizingroomtemperatureresonanttunnelmagnetoresistanceincrfemgal2o4quasiquantumwellstructures
AT miurayoshio realizingroomtemperatureresonanttunnelmagnetoresistanceincrfemgal2o4quasiquantumwellstructures
AT mitaniseiji realizingroomtemperatureresonanttunnelmagnetoresistanceincrfemgal2o4quasiquantumwellstructures