Cargando…

Ionizing radiation increases the endothelial permeability and the transendothelial migration of tumor cells through ADAM10-activation and subsequent degradation of VE-cadherin

BACKGROUND: We analyzed the changes in permeability of endothelial cell layers after photon irradiation, with a focus on the metalloproteases ADAM10 and ADAM17, and on VE-cadherin, components crucial for the integrity of endothelial intercellular junctions, and their roles in the transmigration of c...

Descripción completa

Detalles Bibliográficos
Autores principales: Kouam, Pascaline Nguemgo, Rezniczek, Günther A., Adamietz, Irenäus A., Bühler, Helmut
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6794838/
https://www.ncbi.nlm.nih.gov/pubmed/31619190
http://dx.doi.org/10.1186/s12885-019-6219-7
Descripción
Sumario:BACKGROUND: We analyzed the changes in permeability of endothelial cell layers after photon irradiation, with a focus on the metalloproteases ADAM10 and ADAM17, and on VE-cadherin, components crucial for the integrity of endothelial intercellular junctions, and their roles in the transmigration of cancer cells through endothelial cell monolayers. METHODS: Primary HUVEC were irradiated with 2 or 4 Gy photons at a dose rate of 5 Gy/min. The permeability of an irradiated endothelial monolayer for macromolecules and tumor cells was analyzed in the presence or absence of the ADAM10/17 inhibitors GI254023X and GW280264X. Expression of ADAM10, ADAM17 and VE-Cadherin in endothelial cells was quantified by immunoblotting and qRT. VE-Cadherin was additionally analyzed by immunofluorescence microscopy and ELISA. RESULTS: Ionizing radiation increased the permeability of endothelial monolayers and the transendothelial migration of tumor cells. This was effectively blocked by a selective inhibition (GI254023X) of ADAM10. Irradiation increased both, the expression and activity of ADAM10, which led to increased degradation of VE-cadherin, but also led to higher rates of VE-cadherin internalization. Increased degradation of VE-cadherin was also observed when endothelial monolayers were exposed to tumor-cell conditioned medium, similar to when exposed to recombinant VEGF. CONCLUSIONS: Our results suggest a mechanism of irradiation-induced increased permeability and transendothelial migration of tumor cells based on the activation of ADAM10 and the subsequent change of endothelial permeability through the degradation and internalization of VE-cadherin.