Cargando…
Hybrid Brain-Computer-Interfacing for Human-Compliant Robots: Inferring Continuous Subjective Ratings With Deep Regression
Appropriate robot behavior during human-robot interaction is a key part in the development of human-compliant assistive robotic systems. This study poses the question of how to continuously evaluate the quality of robotic behavior in a hybrid brain-computer interfacing (BCI) task, combining brain an...
Autores principales: | Fiederer, Lukas D. J., Völker, Martin, Schirrmeister, Robin T., Burgard, Wolfram, Boedecker, Joschka, Ball, Tonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6795684/ https://www.ncbi.nlm.nih.gov/pubmed/31649523 http://dx.doi.org/10.3389/fnbot.2019.00076 |
Ejemplares similares
-
An extended clinical EEG dataset with 15,300 automatically labelled recordings for pathology decoding
por: Kiessner, Ann-Kathrin, et al.
Publicado: (2023) -
Deep learning with convolutional neural networks for EEG decoding and visualization
por: Schirrmeister, Robin Tibor, et al.
Publicado: (2017) -
A Robust Screen-Free Brain-Computer Interface for Robotic Object Selection
por: Kolkhorst, Henrich, et al.
Publicado: (2020) -
Electrical Stimulation of the Human Cerebral Cortex by Extracranial Muscle Activity: Effect Quantification With Intracranial EEG and FEM Simulations
por: Fiederer, Lukas Dominique Josef, et al.
Publicado: (2016) -
A Structured Approach to Test the Signal Quality of Electroencephalography Measurements During Use of Head-Mounted Displays for Virtual Reality Applications
por: Weber, Desirée, et al.
Publicado: (2021)